首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
采用荧光染色技术、光学显微镜和电子显微镜技术,系统研究了落叶松-杨栅锈菌在感病杨树叶片上的发育过程。结果表明,在侵染前期(接种12h以内),锈菌夏孢子在杨树叶片上萌发,利用芽管或附着胞穿透叶表气孔后形成气孔下囊,进而在胞间产生侵染菌丝。进入活体营养生长阶段(接种后24-96h),锈菌不断产生大量吸器来满足营养需求的同时,侵染菌丝在叶肉细胞间隙蔓延分枝生长至形成菌落结构。最终在产孢阶段(接种120h之后)产孢菌丝分化形成的夏孢子在表皮下聚集成堆,待成熟后突破表皮显露出来。  相似文献   

2.
尖角突脐孢菌侵染过程及稗草反应超微结构观察*   总被引:5,自引:0,他引:5  
为了解尖角突脐孢菌侵染稗草植株的致病机理,应用电镜观察了该菌侵染稗草植株过程和寄主细胞的超显微结构变化。结果表明:尖角突脐孢菌分生孢子于接种8h后从突脐孢的基部开始萌发菌丝,接种13h后菌丝直接穿透稗草叶表面细胞连接处或经气孔侵入,接种后24~26h完成侵染过程。被侵染的寄主,膜结构发生变形,同时细胞线粒体的嵴变形膨大,叶绿体内的淀粉粒消失,寄主细胞内有大量酚物质出现。  相似文献   

3.
荧光素钠和考马斯亮蓝应用于小麦白粉病菌染色效果比较   总被引:1,自引:0,他引:1  
比较了荧光素钠和考马斯亮蓝应用于小麦白粉菌染色的效果。荧光素钠法中样品处理只需20min左右,具有直接,快速的特点;荧光指示剂对病菌分生孢子萌发及菌丝生长无抑制作用,主要沉集于活菌体的隔膜和细胞质部位,使病菌产生明显的亮绿荧光和清晰的细胞轮廓,亮绿荧光衰退期为7min;借助荧光显微镜可以观察病菌在小麦叶表的发展过程,区别活菌体和失活菌体。考马斯亮蓝法包括传统的组织学染色步骤,经过改进后的样品处理过程需要40min左右;染后使寄主组织呈现淡蓝色,病菌菌体染成深蓝色;该方法可以观察病菌在小麦叶表和被侵染细胞内部发育形成的结构,包括孢子发育形成的初生芽管,附着胞芽管,成熟附着胞以及在寄主细胞内形成的初生吸器原体,成熟的指状体吸器和次生吸器。  相似文献   

4.
比较了荧光素钠和考马斯亮蓝应用于小麦白粉病菌染色的效果。荧光素钠法中样品处理只需20min.左右,具有直接、快速的特点;荧光指示剂对病菌分生孢子萌发及菌丝生长无抑制作用,主要沉集于活菌体的隔膜和细胞质部位,使病菌产生明显的亮绿荧光和清晰的细胞轮廓,亮绿荧光衰退期为7min.;借助荧光显微镜可以观察病菌在小麦叶表的发展过程,区别活菌体和失活菌体。考马斯亮蓝法包括传统的组织学染色步骤,经过改进后的样品处理过程需要40min.左右;染色后使寄主组织呈现淡蓝色,病菌菌体染成深蓝色;该方法可以观察病菌在小麦叶表和被侵染细胞内部发育形成的结构,包括孢子发育形成的初生芽管、附着胞芽管、成熟附着胞以及在寄主细胞内形成的初生吸器原体、成熟的指状体吸器和次生吸器。  相似文献   

5.
飞虱虫疠霉分生孢子在桃蚜体壁上的附着与入侵   总被引:4,自引:0,他引:4  
冯明光  徐均焕 《菌物系统》2002,21(2):T001-T002
用飞虱虫疠霉(Pandora delphacis)初级分生孢子接种桃蚜(Myzus persicae),24h内定时取样,在扫描电镜下观察孢子的萌发及其对寄主体壁的入侵。结果表明,附着到蚜体表面的孢子在4h内有30-40%已萌发产生芽管,少数是呈叉状分枝的营养生长型芽管。且侵染性芽管的孢子部分孢入体壁蜡质层中,显示孢子有分泌物产生并作用于寄主体壁。接种10h内,侵染性芽管通过顶端膨大的附着胞或直接穿透入寄主体壁。到24h时,产生侵染性芽管的孢子全部侵入寄主体内,寄主体表仅留下少数未萌发的孢子或营养生长型芽管。初级分生孢子在蚜体表面很少产生次级分生孢子,说明桃蚜是适合该菌侵染的寄主。陷入寄主体壁的孢子不因若蚜蜕皮而被去掉,表明该菌对成蚜和若蚜都具有侵染力。  相似文献   

6.
绿僵菌侵染小菜蛾体表过程的显微观察   总被引:10,自引:3,他引:7  
采用扫描电镜研究了小菜蛾Plutella xylostella体表结构对绿僵菌入侵行为的影响及绿僵菌的侵染过程。结果表明: 绿僵菌孢子在小菜蛾体表萌发后可形成附着胞,寄主体表结构影响形成附着胞的快慢、多少及穿透体壁时芽管长度, 在平缓结构区和刺状结构区比嵴状结构区更易形成附着胞,且芽管较短。在所有结构区,LF68菌株穿透芽管均短于LD65菌株的芽管。接种后7 h,分生孢子在小菜蛾体表开始萌发,LF68与LD65菌株分别于接种后10 h和13 h出现侵染构造穿透体壁。  相似文献   

7.
柿树炭疽菌侵染不同柿树种、品种和部位的细胞学特征   总被引:4,自引:2,他引:2  
张敬泽  徐同 《菌物学报》2005,24(1):116-122
用柿树炭疽病菌Colletotrichumgloeosporioides的分生孢子制备孢子悬浮液,接种无核柿、野柿、冬柿和浙江柿的新梢、叶柄和叶片,并观察致病性、附着胞形成和侵染特性。柿树炭疽菌可以侵染无核柿枝条和叶柄以及野柿枝条,但不侵染无核柿叶片、野柿叶柄和叶片,也不侵染冬柿和浙江柿枝条、叶柄和叶片。室内接种试验与田间自然发病结果一致。柿树炭疽菌在不同柿树表面均能形成附着胞,附着胞产生在寄主表皮背斜细胞壁间结合处(JACWs)或近结合处的百分率达81%~93%。接种12h后,不同柿树表面都有附着胞形成;36h后,无核柿枝条、叶柄中有侵染菌丝存在;48h后,无核柿枝条、叶柄中观察到膨大初生菌丝和较细次生菌丝,初生菌丝可扩展到相邻细胞中,而野柿枝条中仅观察到侵染菌丝;60h后,野柿枝条中也观察到膨大的初生菌丝和较细的次生菌丝,但初生菌丝仅局限在最初侵染的细胞中,无核柿枝条和叶柄以及野柿枝条中都有分枝的次生菌丝在细胞内、细胞间或相邻的细胞中扩展;直到接种90h后,在冬柿和浙江柿上都未观察到侵染菌丝的形成。结果表明,柿树炭疽菌在不同柿树种和品种上侵染菌丝的形成和扩展方式可能是其寄主专化性(或致病性)差异的重要机制之一。  相似文献   

8.
冯明光  徐均焕 《菌物学报》2002,21(2):270-273
用飞虱虫疠霉(Pandora delphacis)初级分生孢子接种桃蚜(Myzus persicae),24 h内定时取样,在扫描电镜下观察孢子的萌发及其对寄主体壁的入侵。结果表明,附着到蚜体表面的孢子在4 h内有30~40%已萌发产生芽管,其中多数为侵染性芽管,少数是呈叉状分枝的营养生长型芽管。具侵染性芽管的孢子部分陷入体壁蜡质层中,显示孢子有分泌物产生并作用于寄主体壁。接种10 h内,侵染性芽管通过顶端膨大的附着胞或直接穿透侵入寄主体壁。到24 h时,产生侵染性芽管的孢子全部侵入寄主体内,寄主体表仅留下少数未萌发的孢子或营养生长型芽管。初级分生孢子在蚜体表面很少产生次级分生孢子,说明桃蚜是适合该菌侵染的寄主。陷入寄主体壁的孢子不因若蚜蜕皮而被去掉,表明该菌对成蚜和若蚜都具有侵染力。  相似文献   

9.
小麦叶锈菌侵染过程的显微和超微结构   总被引:5,自引:0,他引:5  
采用光学显微技术和电子显微技术对小麦叶锈菌的侵染过程进行了研究。发现叶锈菌从气孔侵入后在气孔腔内形成气孔下泡囊,然后分化出圆形的膨大体,由膨大体产生1—2初生菌丝,初生菌丝在寄主细胞间隙延伸扩展,与叶肉细胞壁接触后分化形成吸器母细胞,吸器母细胞进入寄主细胞后形成吸器。初生菌丝在吸器母细胞处产生分枝,形成次生菌丝在叶肉细胞间蔓延。在病原菌侵染早期(接种后8—24h),寄主细胞的超微结构变化并不明显。侵染中、后期(接种48—72h),被侵染叶肉细胞发生严重质壁分离,叶绿体膨胀变形,基粒片层排列疏松。线粒体嵴突退化。  相似文献   

10.
赵晶  朱刚  黄园  张荣  胡小平  孙广宇 《菌物学报》2012,31(4):548-559
利用光学和电子显微镜,从组织细胞学水平系统研究了冠盘二胞Marssonina coronaria在苹果抗、感病品种叶片上的侵染过程及侵染后寄主细胞的超微结构特征。结果表明:冠盘二胞的侵入和定殖过程可以分为6个阶段:孢子萌发与芽管形成、附着胞形成、侵入细胞角质层、在叶肉细胞内产生吸器、菌丝在叶肉细胞间和细胞内扩展、分生孢子盘形成。随着菌丝扩展,受侵寄主细胞出现细胞壁加厚,细胞壁降解,质壁分离,叶绿体内淀粉粒、嗜饿颗粒积累,叶绿体基粒片层瓦解,线粒体空泡化等现象。在不同抗性的苹果品种上,分生孢子萌发率差别不明  相似文献   

11.
Kumar V  Singh GP  Babu AM 《Mycopathologia》2004,157(1):127-135
Aspergillosis is a common disease of the silkworm Bombyx mori Linn., caused by an insect mycopathogen Aspergillus flavus Link:Fries. The present study reveals the germination, penetration and conidial development of A. flavus on the larval integument of B. mori under SEM. Four different strains (NB18, KA, NB4D2 and NB7) of B. mori was surface inoculated with ca. of 1 x 10(6) conidia/ml. Each conidium germinated on the cuticle approximately 6 h after inoculation, forming a humpy or suctorial appressoria within 24 h. The hyphae which entered into haemocoel 2 day post-inoculation, grew and multiplied extensively, forming a mycelial complex, causing death of the host larva in about 4-5 days. This occurred with minimal breakdown of the internal tissues. Death of the host was followed by ramification of the fungus through the mesodermal and epidermal tissues, leading to larval mummification about 5-6 days after inoculation. Extensive fungal growths on the entire larval body followed, consisting of aerial hyphae, which developed branched conidiophores. The aerial hyphae with abundant conidiophores formed a confluent yellowish green fungal mat over the entire larval body in 6-7 days of post-inoculation. The tip of each emerging conidiophores gradually dilated and developed to become a bulbous head known as the vesicle. A large number of conidiogenous cells were produced over the entire surface of vesicle, which later developed into finger-like projections termed as sterigmata or phialides. The phialides matured within 2 days after the aerial hyphae emerged as evidenced by chains of conidia at their tips. The conidia were globose with externally roughened walls. The life cycle of the fungus on B. mori was completed in six to seven days.  相似文献   

12.
Colletotrichum gloeosporioides is a common pathogenic fungus in many plants. To investigate the specificity of the isolate C. gloeosporioides to green fruits, fungal behaviours and anthracnose development on green and red pepper fruits were compared using light and stereo microscopic techniques. When the isolate of C. gloeosporioides was inoculated on both green and red fruits, conidial germination, appressoria, and infection hyphae were observed on both fruits within 24 h after inoculation. The fungal invasion and colonization continued to the epidermal cells of green fruits, but not to those of red ones. Initial anthracnose symptoms were detected only on green fruits at 2 days after inoculation resulting in typical sunken necrosis within 5 days after inoculation. Thus the specificity of the isolate to green fruits may be due to successful invasion and colonization of the infection hyphae from appressoria into the epidermal cells through epicuticular layers of green pepper fnats, but not on red ones.  相似文献   

13.
The behavior of rust fungi in their host plants has been elucidated by electron microscopy. However, most of the ultrastructural studies on rust fungi have focused on the uredial stage. In order to elucidate the features of the sporidial stage, we studied the fine structure of Kuehneola japonica, a short-cycle rust, in rose leaves. Infection pegs arising from appressoria penetrated the host walls. Papillae formed at the time of penetration against the outer epidermal cell walls. The papillae which had formed at the penetration sites grew extensively and partially surrounded the intracellular hyphae which were connected with the infection pegs. The intracellular hyphae in the epidermal cells developed further and entered adjacent parenchyma cells. Walls of parenchyma cells either invaginated or thin papillae formed at penetration sites and the invaginated walls or papillae surrounded the necks of the intracellular hyphae. Intracellular hyphae in both epidermal and parenchyma cells were not enveloped by the sheath before 20 days after inoculation. In specimens prepared 20 days after inoculation, some of the intracellular hyphae were enveloped by a sheath in both palisade and spongy parenchyma cells. The sheathed hyphae resembled haustoria of other rust fungi which had been described previously. Teliospore initials were formed in mycelial masses in intercellular spaces between the epidermal cells and palisade parenchyma cells 20 days after inoculation. Uninucleate teliospores developed from teliospore initials 30 days after inoculation.Contribution No. 32.  相似文献   

14.
Races of Oenothera biennis (evening primrose) resistant and susceptible to Erysiphe polygoni (a powdery mildew fungus) were artificially inoculated with E. polygoni and the time course and mode of disease development recorded. This study was the initial stage in investigating the host's resistance mechanism(s). On leaves of susceptible and resistant races, spores germinated within 5 hr, appressoria were formed in 8-12 hr, and penetration had been effected and haustoria initiated by 20 hr. There was no further development on resistant plants. On susceptible hosts, secondary penetration occurred by 26 hr after inoculation, secondary haustoria were formed, and sporulating colonies were seen in 4 days. It was concluded that the fungus is unable to establish a feeding relationship with the epidermal cells of resistant Oe. biennis, marking the period between 20 and 26 hr after inoculation as the time frame for the manifestation of the resistance mechanism(s).  相似文献   

15.
Chronological histological alterations of Metarhizium anisopliae during interaction with the cattle tick Boophilus microplus were investigated by light and scanning electron microscopy. M. anisopliae invades B. microplus by a process which involves adhesion of conidia to the cuticle, conidia germination, formation of appressoria and penetration through the cuticle. Twenty-four hours post-infection conidia are adhered and germination starts on the surface of the tick. At this time, the conidia differentiate to form appressoria exerting mechanical pressure and trigger hydrolytic enzyme secretion leading to penetration. Massive penetration is observed 72 h post-inoculation, and after 96 h, the hyphae start to emerge from the cuticle surface to form conidia. The intense invasion of adjacent tissues by hyphae was observed by light microscopy, confirming the ability of M. anisopliae to produce significant morphological alterations in the cuticle, and its infective effectiveness in B. microplus.  相似文献   

16.
本研究采用荧光染色和荧光显微镜技术,系统研究了短柄草柄锈菌Puccinia brachypodii (分离系F-Co和K-Ki)在感病二穗短柄草Brachypodium distachyon自交系Bd21-3叶片中的发育过程。荧光显微镜观察结果表明,接种12-18 h时,病原菌通过芽管侵入短柄草叶表皮气孔后形成气孔下囊,产生初生菌丝并形成吸器母细胞,进而侵入植物细胞形成吸器;接种24-48 h后,病原菌初生菌丝分支并形成次生菌丝;接种72 h后,短柄草锈菌开始形成菌落。F-Co的发育过程快于K-Ki,在120-216 h时,F-Co的菌落扩展面积明显高于K-Ki。本研究证实F-Co、K-Ki和二穗短柄草均为亲和互作。  相似文献   

17.
Rice (Oryza sativa) cv. Nipponbare expresses non-host resistance (NHR) to the wheat leaf rust fungus, Puccinia triticina f. sp. tritici (Ptt). When the leaves of cv. Nipponbare were inoculated with Ptt, approx 93% of the urediniospores germinated on the leaf surface, but only 10% of the germinated spores formed appressoria over the stomata at one day post inoculation (1 dpi). Hydrogen peroxide (H2O2) accumulated in host cells around the appressoria at 3 dpi. Approx. 3% of the appressoria produced short hyphae inside the leaf, and fluorescence was observed in tissue invaded by the hyphae by 7 dpi. At 22 dpi, 0.2% of the sites with appressoria formed branching infection hypha in mesophyll cells, but no substomatal vesicles, haustorial mother cells or haustoria were observed. Proteins were extracted from leaves 3 dpi and analyzed by two-dimensional gel electrophoresis (2-DE). A total 33 spots were reproducibly up-regulated and 9 were down-regulated by infection compared to the water inoculated control. Of these, 30 were identified by MALDI-TOF Mass Spectrometry. The identified proteins participate in defense/stress responses, energy/carbohydrate metabolism, oxidation–reduction processes, protein folding/turnover/cleavage/degradation, signal transduction and cell death regulation. The results indicates that NHR of rice to Ptt is consistent with a shift in protein and energy metabolism, increased antimicrobial activities, possibly including phytoalexin accumulation and cell wall reinforcement, increased cell repair, antioxidive and detoxification reactions, and enhanced prevention of plant cell death. Nearly half of the up-regulated identified proteins were associated with chloroplast and mitochondrial physiology suggesting important roles for these organelles during NHR.  相似文献   

18.
In N. Ireland Diaporthe perniciosa March is a common inhabitant of the dead wood of Bramley's Seedling apple trees, and its pycnospores, extruded throughout the growing season, are responsible for fruit infections which result in stalk-end rots during storage.
Pycnidia were produced in culture only after exposure to light, near-UV radiation being particularly favourable. The carbon source in the medium influenced pycnidia production: high yields were obtained where mannitol was used. Only a -spores germinated under the conditions tested, giving optimum germination at 25 C. in a water film. No germination occurred at less than 98% R.H. Germ tubes and hyphae developed appressoria after germination on artificial surfaces but on apple skin most spores produced only a protuberance from which penetration hyphae developed directly. The cuticle and epidermal cells of apples of all ages were penetrated within a few days of inoculation. Intact surfaces and lenticels were penetrated equally. Susceptibility to further rotting increased with age of the fruit. Apples loaded with spores early in the season rotted later than similar apples loaded just before picking. Polygalacturonase was detected in sap expressed from rotted apples of various ages, the level of activity being correlated with the susceptibility of the fruit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号