首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
大鼠脑组织Nav1.5钠通道的基因克隆及分布分析   总被引:2,自引:0,他引:2       下载免费PDF全文
为了阐明大鼠脑组织Nav1.5钠通道α亚单位的编码基因、分子特性及其在不同发育阶段各脑叶的分布差异,应用逆转录聚合酶链反应(RT-PCR)方法,对大鼠脑组织Nav1.5钠通道α亚单位进行了克隆(命名为rN1),并比较其在不同发育阶段各脑叶的分布情况.rN1基因编码2016个氨基酸残基,序列分析显示,其与rH1氨基酸相似性为96.53%,与hNbR1相似性为96.13%.在DI-S3~S4发现与rH1不同的一个新的外显子(第7外显子),同时发现DⅡ~Ⅲ选择性剪切了第20外显子(53个氨基酸残基)的异构体(命名为rN1-2).分布结果显示,大鼠脑组织Nav1.5钠通道α亚单位在不同发育阶段各脑叶分布有明显的差异,研究证实,Nav1.5钠通道在大鼠脑组织显著表达,存在脑叶的分布差异,而且随着脑组织的发育,其表达逐渐趋于稳定,实验证实Nav1.5钠通道基因编码了一个新的外显子而且其表达范围更加广泛.  相似文献   

2.
河豚毒-抵抗性(TTX-R)Nav1.5 Na 通道是心肌的特异性Na 通道,虽然研究发现神经元中也存在河豚毒-抵抗性Na 电流及Nav1.5/SCN5A mRNA的表达,但其确切的cDNA序列尚不清楚.采用RT-PCR法对人脑组织Nav1.5/SCN5A基因cDNA进行克隆发现:人脑组织Nav1.5/SCN5A基因cDNA有2种变构体,hB1和hB2(accession number EF629346,EF629347),其中hB1全长6201个碱基,其开放读码框架(ORF)参与编码2016个氨基酸,和人心肌Nav1.5 Na 通道氨基酸序列相同率高达98%,共有28个不同的氨基酸,其中7个集中位于第6A外显子与第6外显子编码区.与人心肌Nav1.5/SCN5A基因cDNA不同的是,在对人脑组织Nav1.5/SCN5A基因cDNA的克隆中未发现该基因第18外显子的选择性剪接,但却发现其第24外显子的选择性剪接,2种选择性剪接体(hB1和hB2)在脑组织中基本同时表达,表达比率接近1∶1,但在心脏中二者的表达比率却与年龄有关.人Nav1.5/SCN5A基因的第24外显子定位于染色体3P21区,共有54个碱基,参与编码18个氨基酸.RT-PCR法证实第24外显子的选择性剪接也可发生在大鼠心脑之外的其他组织中,竞争性PCR法证明,不同组织中2种选择性剪接体的表达比率不同,且随着周龄的增加,2种选择性剪接体在各组织中表达的变化趋势不同.此外,RT-PCR法还发现Wistar大鼠全身16种组织中均可检测到Nav1.5/SCN5A mRNA的表达.上述实验结果说明,Nav1.5 Na 通道在全身组织中分布广泛,但编码人脑组织Nav1.5 Na 通道与心肌组织该离子通道的cDNA序列不同,是Nav1.5/SCN5A基因的2种变构体,这为深入研究不同组织中Nav1.5 Na 通道的功能提供了基础.  相似文献   

3.
心肌钠,钾离子通道的分子生物学进展   总被引:1,自引:0,他引:1  
分子生物学和电生理学(膜片钳技术)的联合应用研究对于阐明心肌钠、钾离子通道的分子结构与功能表达已取得突破性进展。现已证明,心肌钠离子通道主要由基β-亚单位作为功能性单位以表达出钠通道竭尽成分,其α-亚单位的存在可能改变钠电流的动力学性质。多种钾离子通道及其电流成分亦已在心肌细胞上鉴定出来。分子生物学研究已揭示出与心肌钠、钾通道功能表达有关的基因结构。在生理(例如心肌发生学过程中)情况下或病变心肌时  相似文献   

4.
编码脑组织Nav1.5钠通道新外显子的克隆、鉴定和分布   总被引:1,自引:0,他引:1  
Nav1.5电压-门控钠通道(VGSC)被认为是心肌的特异性通道,但最近的研究发现,该通道在脑组织尤其是边缘系统中亦广泛分布.此前,在对人神经母细胞瘤细胞钠通道的基因克隆中,发现Nav1.5/SCN5A基因的第6A外显子参与编码该通道.采用人及鼠脑组织,通过RT-PCR法对Nav1.5钠通道基因进行克隆发现:Nav1.5/SCN5A基因中的第6A外显子参与编码了该通道,而心肌等其他组织却是第6外显子参与编码该通道.人Nav1.5/SCN5A基因的第6A和第6外显子都定位于3号染色体,共有92个碱基,都可以编码产生30个氨基酸,但却有7个氨基酸不同.人和鼠脑组织Nav1.5/SCN5A基因的第6A外显子仅有一个碱基不同,却产生相同的氨基酸序列.RT-PCR法证实第6A外显子在鼠脑的不同部位表达不同,第6外显子在大鼠不同组织中的表达也不同,这为深入研究不同系统中Nav1.5钠通道的功能提供了基础.  相似文献   

5.
电压门控钠离子通道对Na+的选择性通透是神经元等兴奋性细胞产生动作电位的基础。该通道为跨膜蛋白,主要是由形成孔道的α亚基和一个或几个辅助性的β亚基组成,近年来发现,β亚基对α亚基的调节主要是在调节钠通道的膜上表达和亚细胞定位方面。由于β亚基的突变不仅能够引起动作电位的传导异常,导致神经元功能障碍,引发多种心脏系统疾病,包括恶性心律失常、Brugada综合征、QT间期延长综合征及其他传导性疾病,还能引起亨廷顿病(Huntigton’s diaease,HD)等神经系统疾病。本文就近几年钠离子通道β亚基生理功能的研究及其突变体与疾病的关系等方面作一阐述。  相似文献   

6.
电压-门控Na+通道由1个可单独发挥作用的α亚单位和2~4个起辅助作用的β亚单位构成,在可兴奋细胞动作电位的产生及传导等过程中起重要作用.采用RT-PCR法对5个不同发育阶段(P1、P9、P40、P80、P120)Wistar大鼠16种不同组织的9种Na+通道α亚单位及1种β亚单位的mRNA进行检测发现:同种类型Na+通道mRNA在大鼠不同组织中的表达不同,不同类型Na+通道mRNA在大鼠同一组织中的表达不同.其中,神经系统和心肌组织中Na+通道mRNA的表达最高,随着日龄的增加,Na+通道mRNA在不同组织中表达的变化趋势不同.Na+通道在全身组织中的广泛分布及随发育周期的不同变化趋势,为离子通道病的研究及治疗提供了理论基础.  相似文献   

7.
目的:研究周期性张应力对Na+/K+-ATPase功能活性及其表达的影响,明确Na+/K+-ATPase在功能矫形中面颌肌肉适应性改建的生物和分子机制.方法:构建面颌肌细胞体外培养-力学刺激模型;应用多通道细胞牵张应力加载系统,对面颌肌细胞施加不同时段的张应力刺激,测定Na+/K+-ATPase的功能活性;运用实时荧光定量PCR研究周期性张应力刺激对Na+/K+-ATPase功能亚基α亚单位mRNA的影响.结果:Na+/K+-ATPaseα1,α2亚单位随着加力时间延长,表达增强,同对照组比较,呈一致性上调(P<0.001);细胞加力1小时,α1的mRNA表达不受影响;加力2小时后,α1和α2的mRNA表达呈现逐渐增强趋势,48 h时达到最大值.张应力刺激对α2亚单位的mRNA表达似乎更为敏感,加力lh时α2亚单位的mRNA表达水平即增加,增加量约为对照组的37.74%,具有显著的统计学意义.结论:周期性的机械牵张作用于培养的骨骼肌细胞,可诱导α1和α2亚单位mRNA的表达量增加;α1和α2亚单位对周期性张应力刺激的作用时间反应不同,α2亚单位的反应可能更为敏感.周期性张力刺激的增加所产生的压力可能是转录调节的主要因素;周期性张应力对骨骼肌细胞Na+/K+-ATPase水解亚的调节作用不同,可能在面颌肌肉对功能矫形力的适应性改建中具有重要作用.  相似文献   

8.
以往研究已发现Na+,K+-ATPase含有α、β和γ亚单位.为了对三种亚单位有一个较为全面的认识,现对亚单位的基本结构、研究简况、生理及病理功能、表达调节等基本情况作一综述.  相似文献   

9.
电生理学研究表明心脏组织细胞主要存在L型和T型两种不同的Ca2 通道,其中T型Ca2 通道主要存在于正常成熟心脏的浦肯野纤维和起搏点细胞以及胚胎心室肌细胞,而正常成熟心肌细胞中存在很少,但在心脏肥大和心衰等心脏疾病的心肌细胞中表达明显增加,提示T型Ca2 通道与心脏正常节律的形成和心脏发育以及一些心脏疾病的发生与发展密切相关.  相似文献   

10.
海马神经元长时程增强(LTP) 被认为与学习和记忆的形成有关.Na+在诱导 LTP产生的过程中十分重要.实验发现,慢性铝暴露可以影响大鼠海马神经元LTP的产生,随着铝暴露浓度的增加,LTP 的幅值逐渐降低.RT-PCR 法对大鼠海马神经元 9 种类型Na+ 通道(即 Nav1.1~Nav1.9)的 mRNA 进行检测发现,除 Nav1.4 和 Nav1.8 Na+通道 mRNA 在大鼠海马神经元中未见表达外,慢性染铝组大鼠海马神经元7种Na+ 通道 mRNA 表达均明显增高(P<0.05).蛋白印迹法对一种脑型 Na+通道 (Nav 1.2) 蛋白检测证明, Na+通道蛋白表达亦明显升高.结果提示,铝进入神经元后,可能通过影响 Na+ 通道蛋白的表达而影响了突触后神经细胞的去极化,进而影响了LTP的诱导过程,从而预示铝的暴露可能损害大鼠学习和记忆能力.  相似文献   

11.
目的:研究周期性张应变对面颌肌细胞Na+/K+-ATPaseα亚单位蛋白表达的影响以确定其作用及机制.方法:在建立面颌肌细胞的力学刺激-细胞体外培养模型的基础上,采用Western blot法分析周期性张应变对Na+/K+-ATPase α1和α2亚单位蛋白表达的影响,加力组分别给予1、2、12、24和48h的力学刺激,施加力值为15%的细胞形变,频率为10cycles/min.以静态组为对照组.对照组及实验组各包含4个实验样本.Western blot检测Na+/K+-ATPaseα1和α2亚单位蛋白的表达.结果:α1亚单位的蛋白表达量除加力1h组与对照组之间、加力24 h与48 h之间无统计学差异外,其余各组之间以及各组与对照组之间均有显著的统计学意义.α2亚单位蛋白表达量除加力24 h与48 h组之间无统计学差异外,其余各组之间以及各组与对照组之间均有显著的统计学意义.结论:在一定时间范围内,周期性张应变可刺激α1和α2亚单位蛋白表达增加,随作用时间的延长蛋白表达受抑制.提示在肌能力的刺激下,面颌肌细胞的相关酶蛋白的功能及表达将发生适应性改建,但其功能亚基的调控机制可能不同.这为选择不同的方法和手段进行临床干预提供了理论依据,因而具有重要的参考意义.  相似文献   

12.
BK_(Ca)通道是细胞膜上受Ca~(2+)和膜电位双重调控的离子通道,其与细胞信号系统偶联并发挥着重要作用,该通道高度表达于高等动物的多种组织.最近的研究证实,在心肌细胞膜上存在力敏感BK通道并参与了心脏收缩与舒张的调控.本文将介绍BK通道与L-型钙通道功能上的耦合,心肌细胞质膜力敏感BK通道门控和功能的研究,以及对基底刚度的响应.这有助于更好地理解力敏感离子通道相关心脏疾病的病理和生理学基础.  相似文献   

13.
《生命科学研究》2016,(3):196-201
敬钊毒素-Ⅲ(JingzhaotoxinⅢ,JZTX-Ⅲ)是从敬钊缨毛蛛毒液中分离到的一种门控调节型毒素,能选择性抑制钠通道亚型Nav1.5激活,但对其他6种钠通道亚型(Nav1.1 Nav1.4 Nav1.6和Nav1.7)无抑制作用。为了更好地研究钠通道结构与功能之间的关系,采用全细胞膜片钳技术检测了JZTX-Ⅲ对表达在ND7123细胞上的Nav1.8画道的影响。结果显示,JZTX-Ⅲ抑制Nav1.8电流,并且这种抑制作用具有时间和浓度依赖性,抑制时间常数和IC_(50)值分别为41.15±0.6 s和1.4±0.23μmol/L;1μmol/JZTX-Ⅲ使Nav1.8画道的电流-电压关系曲线和激活曲线分别向去极化方向漂移10 mV和9mV,使Nav.1.8通道的稳态失活曲线向超极化方向漂移16 mV,明显改变Nav1.8通道的激活和稳态失活动力学。此外,钠通道序列比对结果提示JZTX-Ⅲ可能通过结合Nav1.8通道DIIS3~S4连接环上的Lys(K)残基抑制Nav1.8通道。以上研究结果为进一步探索钠通道结构与功能之间的关系奠定了基础。  相似文献   

14.
BKCa通道的结构与功能   总被引:5,自引:1,他引:4  
BKCa通道将细胞膜电特性与细胞信号系统联系在一起,在细胞功能实现中起着重要作用。该通道广泛且又较高密度地表达于许多物种的多种组织,其分子结构复杂,丰富的超家族成员具有各自不同的表达分布。BKCa通道的分子结构由α亚单位和β亚单位构成,其中α亚单位形成通道的孔道区和活性调节区域,β亚单位修饰通道活性的调节特性。BKCa通道开放几率大、电导率高、调控位点多,并且不同的超家族成员表现出不同的功能特征,如细胞膜电位感受性、细胞内游离钙离子敏感性等。文章概述BKCa通道的分子结构和功能特征。  相似文献   

15.
揭示发病机制是心律失常诊断、治疗、药物研发和设备设计的关键.整合当前在心脏分子生物学、生物化学、生理学及解剖学方面的最新成果,构建从离子通道、心肌细胞、心肌纤维、心肌组织、心脏器官到躯体各个层次的多尺度多模态心脏电生理模型,用于系统研究微观局部变化发生、发展、转化为宏观心律失常表现的过程,将彻底改变传统从基因突变、蛋白质表达、细胞电生理、临床表现单独研究心律失常的方式,实现微观与宏观研究的统一,使心脏电生理模型成为系统研究心律失常发病机制的有力手段.本文综述了心脏电生理模型的构建方法和研究进展,讨论了多尺度心脏电生理模型在揭示心律失常机制研究中的作用和地位,给出了基于心脏电生理模型心律失常研究的挑战和重要发展方向.  相似文献   

16.
目的:探讨血管紧张素II(Ang II)诱导的新生大鼠肥大心肌细胞中L-型钙电流的功能在分子水平改变。方法:在血管紧张素II诱导的新生大鼠肥大心肌细胞中,应用全细胞膜片钳技术检测L-型钙电流的密度及门控动力学变化;应用半定量RT-PCR技术检测L-型Ca2+通道α1C亚单位mRNA的表达量。结果:Ang II在引起新生大鼠心肌肥大的同时,也增加了心肌细胞ICa,L电流密度,但并不影响ICa,L电流的激活、失活和复活特征。另外,Ang II还增加了L-型Ca2+通道α1C亚单位mRNA表达量。Ang II的这些作用都可被其1型受体阻断剂losartan所抑制。结论:在Ang II诱导的新生大鼠肥大心肌中,L-型Ca2+通道的功能在分子水平发生了显著变化,这些变化是通过激活心肌细胞上Ang II 1型受体所介导的。  相似文献   

17.
SCN5A基因编码心脏钠离子通道Nav1.5的α亚基,主要与心脏动作电位的快速去极化有关,是最早研究的离子通道之一。SCN5A的突变和众多遗传性心脏疾病的电生理和结构表型有很大的相关性。其功能丧失突变与Brugada综合征、进行性心脏传导障碍、病窦综合征、特发性心室颤动和心房静止有关,而功能获得突变与长QT综合征3型相关。其他与SCN5A相关的疾病,如心房颤动,婴儿猝死综合征,扩张型心肌病,以及致心律失常性右室心肌病,重叠综合症,都有更复杂的病理生理机制,涉及多种分子表型的变化。随着膜片钳技术和诱导多能干细胞定向分化为心肌细胞(i PSC-CMS)技术的发展,SCN5A基因突变导致遗传性心脏疾病的致病机制已取得较大进展,根据最近的发现,本文主要对近年来SCN5A基因突变导致各种遗传性心脏疾病中的研究进展做一总结。  相似文献   

18.
运用微电极技术研究人类离体心房肌,不仅为了解人类心肌的电生理学特性提供直接资料,还可用它来探讨患病心房肌纤维的电生理学特征、心律失常的发生机制以及研究药物、电解质及神经递质对人体心房肌的作用.随着心脏直视手术的广泛开展,人类离体心房肌细胞的电生理学研究也日益频繁.  相似文献   

19.
桥粒为细胞与细胞之间的一种连接结构,参与细胞间机械应力传导. 在心肌组织中,桥粒与粘着连接及缝隙连接共同构成闰盘,对于维护心肌闰盘结构和功能的完整性具有重要作用. 近年来,越来越多的研究表明,桥粒蛋白基因突变、表达的缺失或功能异常,可引起心肌细胞钠、钾离子通道、缝隙连接蛋白等心肌电活动相关结构的重塑,增加心肌电学异质性,进而促发心律失常. 本文将就桥粒蛋白与离子转运相关通道关系的最新研究进展进行综述.  相似文献   

20.
电压门控钠离子通道是一类门控状态由细胞膜内外电势差所控制,仅在去极化膜电压下才能被激活打开的跨膜钠通道蛋白。其中,Nav1.4在骨骼肌中高度表达,主要形成肌膜动作电位上升支,参与人体一系列骨骼肌相关的生理病理活动。钠离子通道阻滞药与激活药是治疗心血管系统钠离子通道病的两大类药物,对其进行深入、全面的了解具有重要意义。本文从Nav1.4的分子结构、功能、药物开发等方面出发,对Nav1.4的调节机制、相关疾病以及高选择性药物研究情况进行简要综述,为基于Nav1.4作为靶标研发的药物奠定一定的理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号