首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 335 毫秒
1.
海马神经元长时程增强(LTP) 被认为与学习和记忆的形成有关.Na+在诱导 LTP产生的过程中十分重要.实验发现,慢性铝暴露可以影响大鼠海马神经元LTP的产生,随着铝暴露浓度的增加,LTP 的幅值逐渐降低.RT-PCR 法对大鼠海马神经元 9 种类型Na+ 通道(即 Nav1.1~Nav1.9)的 mRNA 进行检测发现,除 Nav1.4 和 Nav1.8 Na+通道 mRNA 在大鼠海马神经元中未见表达外,慢性染铝组大鼠海马神经元7种Na+ 通道 mRNA 表达均明显增高(P<0.05).蛋白印迹法对一种脑型 Na+通道 (Nav 1.2) 蛋白检测证明, Na+通道蛋白表达亦明显升高.结果提示,铝进入神经元后,可能通过影响 Na+ 通道蛋白的表达而影响了突触后神经细胞的去极化,进而影响了LTP的诱导过程,从而预示铝的暴露可能损害大鼠学习和记忆能力.  相似文献   

2.
增效混剂对神经细胞钠通道的抑制作用   总被引:3,自引:1,他引:2  
应用膜片钳技术,以MN-9D神经细胞为材料研究了溴氰菊酯及辛硫磷混剂的增效机理。膜片钳实验表明10-5mol/L辛硫磷对Na+通道电流抑制作用很小,并随作用时间延长而逐步恢复。加药1 min Na+电流抑制率为6.99%,10 min为3.65%。10-6 mol/L溴氰菊酯1 min抑制率为20.28%,10 min为21.43%。对蜚蠊中枢神经系统传导的动作电位抑制中时为53 min;10-6mol/L溴氰菊酯与10-5 mol/L辛硫磷混剂1 min抑制率为34.15%,10 min为36.69%,动作电位抑制中时为40 min,因此混剂可增强对Na+通道电流的抑制作用。通过Na+电流数据、尾电流衰减时间常数统计分析表明溴氰菊酯的修饰作用主要发生在关闭和静止状态的Na+通道,减缓通道的打开,延长通道关闭或失活状态。  相似文献   

3.
在自然盐碱生境下,通过测定不同月份土壤和马蔺体内主要阳离子Na+、K+、Ca2+、Mg2+的含量,研究了主要阳离子的吸收、转运变化及其在马蔺体内的分布.结果表明: 不同月份马蔺体内阳离子含量变动很大.在6月以后,随着马蔺的生长, Na+、K+、Ca2+和Mg2+4种离子在植物体内累积量逐渐增加.其中,根中Ca2+、Na+含量峰值出现在7月,分别为2.30%和0.51%,K+、Mg2+的含量峰值分别出现在9、10月,分别为0.27%和0.28%;叶片中Na+含量在7月达到最大值(0.57%);K+、Ca2+和Mg2+在8月分别达到1.30%、2.69%和0.47%.与Na+相比, 7、8月时马蔺对K+的选择吸收能力较低,但转运能力较强.马蔺对所测离子有很强的富集能力,各种离子在植物体内的含量都明显高于土壤背景值,且不同部位对离子的利用和累积能力不同,马蔺对各阳离子的累积主要集中在地上30 cm到地下40 cm范围内.马蔺地上部分平均单株K+、Na+、Ca2+和Mg2+含量分别是地下部分的9.11、4.07、0.98和2.27倍.  相似文献   

4.
盐胁迫对桑树幼苗生长、叶片水分状况和离子分布的影响   总被引:5,自引:0,他引:5  
以黑龙江省两个桑树品种(秋雨桑和泰来桑)为试验材料,研究了不同盐浓度下桑树幼苗生长、叶片水分关系和不同器官中离子的分布.结果表明:盐胁迫明显降低了桑树幼苗的植株高度和每株干物质量,且对新生叶片干质量的影响大于老叶片.随着盐胁迫的加重,两个品种桑树的叶片水势、渗透势、压力势和相对含水量明显下降,根、茎中Na+浓度明显增加,当外界NaCl浓度达到或超过150 mmol·L-1时,各器官中Na+浓度达到饱和.盐胁迫明显降低了两个品种桑树根、茎和叶片中K+ 和 Ca2+浓度,以及茎和叶片中Mg2+浓度,而对根中Mg2+浓度影响不大.Na+在根、茎和老叶中的区域化分布是两个品种桑树生长过程中表现出耐盐性的机理之一,而盐胁迫使叶片中的Ca2+、K+和Mg2+浓度降低,导致植株体内的离子亏缺,从而限制了植株的生长.  相似文献   

5.
目的:研究周期性张应力对Na+/K+-ATPase功能活性及其表达的影响,明确Na+/K+-ATPase在功能矫形中面颌肌肉适应性改建的生物和分子机制.方法:构建面颌肌细胞体外培养-力学刺激模型;应用多通道细胞牵张应力加载系统,对面颌肌细胞施加不同时段的张应力刺激,测定Na+/K+-ATPase的功能活性;运用实时荧光定量PCR研究周期性张应力刺激对Na+/K+-ATPase功能亚基α亚单位mRNA的影响.结果:Na+/K+-ATPaseα1,α2亚单位随着加力时间延长,表达增强,同对照组比较,呈一致性上调(P<0.001);细胞加力1小时,α1的mRNA表达不受影响;加力2小时后,α1和α2的mRNA表达呈现逐渐增强趋势,48 h时达到最大值.张应力刺激对α2亚单位的mRNA表达似乎更为敏感,加力lh时α2亚单位的mRNA表达水平即增加,增加量约为对照组的37.74%,具有显著的统计学意义.结论:周期性的机械牵张作用于培养的骨骼肌细胞,可诱导α1和α2亚单位mRNA的表达量增加;α1和α2亚单位对周期性张应力刺激的作用时间反应不同,α2亚单位的反应可能更为敏感.周期性张力刺激的增加所产生的压力可能是转录调节的主要因素;周期性张应力对骨骼肌细胞Na+/K+-ATPase水解亚的调节作用不同,可能在面颌肌肉对功能矫形力的适应性改建中具有重要作用.  相似文献   

6.
将当年生构树幼苗置于含有不同浓度(04、1、2、3、4 g·kg-1)NaCl的土壤中,研究其生物量积累、叶片细胞质膜透性和K+、Ca2+、Na+、Cl-等离子的吸收、分布及运输,并观察盐害症状.结果表明:构树幼苗的叶片质膜透性随着NaCl浓度的增加和胁迫时间的延长而升高,根冠比随NaCl浓度的升高而增加,大于3 g·kg-1的土壤盐胁迫对构树叶片的质膜透性及植株的生物量积累影响显著.构树幼苗各器官中Na+和Cl-含量随土壤NaCl浓度升高而显著增加,K+和Ca2+则随之降低,叶片各离子含量均明显高于根和茎.说明盐胁迫影响根系对K+和Ca2+的吸收,并抑制了它们向地上部分的选择性运输,使叶和茎的K+和Ca2+含量下降.构树通过吸收积累Na+和Cl-抵御土壤盐分带来的渗透胁迫,但过量的Na+和Cl-积累会造成单盐毒害.作为抗盐性较高的非盐生植物,构树地上部分的拒盐作用不显著.  相似文献   

7.
不同基因型番茄种子萌发期的耐盐性   总被引:2,自引:0,他引:2  
选用14种不同基因型番茄进行萌芽期NaCl胁迫耐盐性筛选,对相对发芽势和相对发芽率两项指标进行聚类分析,将其划分为耐盐性强(5种)和耐盐性弱(9种)两类,从中选出4种耐盐性和生物性状不同的番茄(耐盐性强:野生醋栗番茄、小果型辽园红玛瑙、大果型红宝石;耐盐性弱:大果型辽园红多丽)分别进行不同种类钠盐以及NaCl、Na+、Cl-两组胁迫试验.结果表明:4种不同基因型番茄对各种盐胁迫响应与NaCl的鉴定结果一致;不同Na+盐中碱性盐NaHCO3对番茄的影响最大,在100 mmol·L-1 Na+浓度下,4种基因型番茄的相对胚芽长度都在8%以下,5种盐对番茄种子萌发的抑制顺序为:NaNO32SO42PO43;NaCl、Na+、Cl-胁迫下,Cl-对番茄的伤害最小.  相似文献   

8.
Nav1.5α亚单位是电压-门控Nav1.5Na+通道发挥作用的核心亚单位,在心肌中首先被成功克隆,是心脏电生理活动最主要的Na+通道α亚单位.最新的研究发现,Nav1.5不仅可以在神经元等非心肌组织中表达,而且其表达的选择性剪接体的类型及电生理学特性与心肌Nav1.5亦不同.目前,不仅对Nav1.5发挥功能的调控机制及与心脏传导功能障碍等疾病的发病关系有了深入的了解,而且一些常见疾病,如肿瘤和癫痫等的发生也被认为可能和Nav1 .5有关. 本文结合国内外对Nav1.5的最新研究及本小组的工作,对Nav1.5的结构、选择 性剪接、基因定位、电生理学活性及与疾病的关系作一详细综述.  相似文献   

9.
以小兴安岭凉水自然保护区内的阔叶红松林、云冷杉林和落叶松人工林为研究对象, 于2006年3—10月, 分析了其溪流水化学特征的动态变化. 结果表明: 不同月份3种森林群落溪流水的主要阳离子含量均表现为 Ca2+>Na+>K+>Mg2+, 主要阴离子含量均为HCO3->SO42->NO3->Cl-;不同群落类型的主要离子含量影响显著, 3种森林群落溪流水中Na+、Ca2+、Mg2+、Fe2+和Fe3+平均含量为云冷杉林>落叶松人工林>阔叶红松林, 而K+为落叶松人工林>云冷杉林>阔叶红松林; 主要阴离子平均含量均以落叶松人工林溪流水中为最高.  相似文献   

10.
以往研究已发现Na+,K+-ATPase含有α、β和γ亚单位.为了对三种亚单位有一个较为全面的认识,现对亚单位的基本结构、研究简况、生理及病理功能、表达调节等基本情况作一综述.  相似文献   

11.
Voltage dependent sodium channels are membrane proteins essential for cell excitability. They are composed by a pore-forming α-subunit, encoded in mammals by up to 9 different genes, and 4 different ancillary β-subunits. The expression pattern of the α subunit isoforms confers the distinctive functional and pharmacological properties to different excitable tissues. β subunits are important modulators of channel function and expression. Mutation C121W of the β1-subunit causes an autosomal dominant epileptic syndrome without cardiac symptoms. The C121W mutation may act by a dominant-competition, modifying the expression of α-subunit proteins. To test this hypothesis, we transfected GH3 cells, from neuro-ectoderm origin, with wild-type or mutant β1 subunits and compared them to native cells. To examine the tissue specificity of the C121W-β1 mutation, we compared the effects of the mutation on neural cells with those of H9C2 cells of cardiac origin. We found that in GH3 cells the over-expression of the β1 subunit augments the α subunit mRNA and protein levels, while in the H9C2 cells the enhanced level of β1 subunit not only increases but also qualitatively modifies the sodium channel α isoform expression pattern. Interestingly, the introduction of the epileptogenic C121W-β1 subunit does not alter the sodium channel isoform composition of GH3 cells, while produces additional changes in the α-subunit expression pattern of H9C2 cells. Electrophysiological measurements confirm these molecular results. The expression differences observed could be correlated to the tissue-specific regulatory action of the β1 subunit and to the nervous system specificity of the C121W mutation. Our findings could be helpful for the comprehension of the molecular mechanism of generalised epileptic with febrile seizures plus in patients with identified β1 subunit mutations.  相似文献   

12.
Subunit composition of voltage- and Ca2+-sensitive high-conductance K+ channels (BK channels) in dentate gyrus (DG) of Krushinskii-Molodkina (KM) rats, genetically prone to audiogenic seizures, was compared with that of normal Wistar rats, resistant to sound effects. Additionally, long-lasting changes in protein expression of α- and β4-subunits in DG of KM rats after audiogenic kindling (model of temporal lobe epilepsy) was investigated. Western blot analysis revealed no differences between the levels of the pore-forming α-subunit expression in DG of KM and Wistar rats. In contrast, the level of brain-specific auxiliary β4-subunit in DG of KM rats was increased twofold in comparison to that in Wistar rats. It is likely that the observed changes in the BK channel α/β4 subunits ratio can prevent the development of excessive neuronal exitability in DG of KM rats. The results obtained on the model of audiogenic kindling (20 convulsion fits) confirmed this assumption. Thus, α-subunit expression levels in DG of KM rats on day 3 and 14 after the last seizure were increased 2.5 times in comparison with intact KM rats. The expression level of β4 in DG of KM rats 3 days after kindling was reduced to 30% of the control level. On day 14 after finishing audiogenic kindling, a further reduction of β4 protein expression level occurred. We suggest that the changes in the subunit composition of BK channels in DG following chronic seizures can alter functional properties of DG as a physiological filter, which normally prevents the propagation of epileptiform activity in the hippocampus.  相似文献   

13.
Heterotrimeric G proteins play important roles as signal transducing components in various mammalian sperm functions. We were interested in the distribution of G proteins in human sperm tails. Prior to membrane preparation, spermatozoa were separated from contaminating cells which are frequently present in human ejaculates. Enriched human sperm tail membranes were generated by using hypoosmotic swelling and homogenization procedures. Antisera against synthetic peptides were used to identify G proteins in immunoblots. AS 8, an antiserum directed against an amino acid sequence that is found in most G protein α-subunits, and A 86, which detects all known pertussis toxin-sensitive α-subunits, reacted specifically with a 40-kDa protein. Antisera against individual G protein α-subunits failed to detect any specific antigens in enriched tail membranes AS 36, recognizing the ã2-subunit of G proteins, identified a 35-kDa protein in sperm tail membranes. Antisera against the 36-kDa β1-subunit did not detect any relevant proteins in the membrane fraction. Neither G protein α-subunits nor G protein β-subunits were found in the cytosol. ADP ribosylation of spermatozoal membrane or cytosolic proteins revealed no pertussis toxin-sensitive α-subunits. However, membrane preparations of nonpurified human spermatozoa contained α2 subunits, as shown immunologically and by ADP ribosylation; they most probably derived from somatic cells which are frequently present in human ejaculates. Our results stress the fact that spermatozoa need to be purified before sperm membrane preparation to avoid misinterpretations caused by contaminating cells. Furthermore, we suggest that G proteins in membranes of human sperm tails belong to a novel subtype of G protein α-subunits; the putative β-subunit was identified as a β2-subunit. © 1995 Wiley-Liss, Inc.  相似文献   

14.
Inhibin and activin are essential dimeric glycoproteins belonging to the transforming growth factor-beta (TGFβ) superfamily. Inhibin is a heterodimer of α- and β-subunits, whereas activin is a homodimer of β-subunits. Production of inhibin is regulated during the reproductive cycle and requires the processing of pro-ligands to produce mature hormone. Furin is a subtilisin-like proprotein convertase (proconvertase) that activates precursor proteins by cleavage at basic sites during their transit through the secretory pathway and/or at the cell surface. We hypothesized that furin-like proconvertases are central regulators of inhibin α- and β-subunit processing within the ovary. We analyzed the expression of the proconvertases furin, PCSK5, PCSK6, and PCSK7 in the developing mouse ovary by real-time quantitative RT-PCR. The data showed that proconvertase enzymes are temporally expressed in ovarian cells. With the transition from two-layer secondary to pre-antral follicle, only PCSK5 mRNA was significantly elevated. Activin A selectively enhanced expression of PCSK5 mRNA and decreased expression of furin and PCSK6 in cultured two-layer secondary follicles. Inhibition of proconvertase enzyme activity by dec-RVKR-chloromethylketone (CMK), a highly specific and potent competitive inhibitor of subtilisin-like proconvertases, significantly impeded both inhibin α- and β-subunit maturation in murine granulosa cells. Overexpression of PC5/6 in furin-deficient cells led to increased inhibin α- and β(B)-subunit maturation. Our data support the role of proconvertase PCSK5 in the processing of ovarian inhibin subunits during folliculogenesis and suggest that this enzyme may be an important regulator of inhibin and activin bioavailability.  相似文献   

15.
Nicotinic acetylcholine receptor (nAChR) α3-subunits, β4-subunits, α3/β4-subunit combination and α4/β2-subunit combination were immobilized on chromatographic stationary phases and the binding affinities of the different nAChR subtypes were chromatographically evaluated. The observed relative binding affinities of epibatidine were α4/β2>α3/β4 and epibatidine did not bind at α3-subunits and β4-subunits. No significant difference in binding affinities was observed on the α4/β2 nAChRs immobilized in immobilized artificial membrane (IAM) particles and those sterically immobilized on Superdex 200 beads. The effects of mobile phase pH and ionic strength on the binding affinities of the α3/β4 nAChRs support were also investigated. The results are consistent with the proposed ligand–nAChR binding model in which a cationic center exists at the binding site.  相似文献   

16.
The BK channel is one of the most broadly expressed ion channels in mammals. In many tissues, the BK channel pore-forming α-subunit is associated to an auxiliary β-subunit that modulates the voltage- and Ca(2+)-dependent activation of the channel. Structural components present in β-subunits that are important for the physical association with the α-subunit are yet unknown. Here, we show through co-immunoprecipitation that the intracellular C-terminus, the second transmembrane domain (TM2) and the extracellular loop of the β2-subunit are dispensable for association with the α-subunit pointing transmembrane domain 1 (TM1) as responsible for the interaction. Indeed, the TOXCAT assay for transmembrane protein-protein interactions demonstrated for the first time that TM1 of the β2-subunit physically binds to the transmembrane S1 domain of the α-subunit.  相似文献   

17.
GABAA receptors are members of the ligand-gated ion channel superfamily that mediate inhibitory neurotransmission in the central nervous system. They are thought to be composed of 2 alpha (α), 2 beta (β) subunits and one other such as a gamma (γ) or delta (δ) subunit. The potency of GABA is influenced by the subunit composition. However, there are no reported systematic studies that evaluate GABA potency on a comprehensive number of subunit combinations expressed in Xenopus oocytes, despite the wide use of this heterologous expression system in structure–function studies and drug discovery. Thus, the aim of this study was to conduct a systematic characterization of the potency of GABA at 43 human recombinant GABAA receptor combinations expressed in Xenopus oocytes using the two-electrode voltage clamp technique. The results show that the α-subunits and to a lesser extent, the β-subunits influence GABA potency. Of the binary and ternary combinations with and without the γ2L subunit, the α6/γ2L-containing receptors were the most sensitive to GABA, while the β2- or β3-subunit conferred higher sensitivity to GABA than receptors containing the β1-subunit with the exception of the α2β1γ2L and α6β1γ2L subtypes. Of the δ-subunit containing GABAA receptors, α4/δ-containing GABAA receptors displayed highest GABA sensitivity, with mid-nanomolar concentrations activating α4β1δ and α4β3δ receptors. At α4β2δ, GABA had low micromolar activity.  相似文献   

18.
Large-conductance Ca2+-activated K+ channel is formed by a tetramer of the pore-forming α-subunit and distinct accessory β-subunits (β1–β4) which contribute to BKCa channel molecular diversity. Accumulative evidences indicate that not only α-subunit alone but also the α + β subunit complex and/or β-subunit might play an important role in modulating various physiological functions in most mammalian cells. To evaluate the detailed pharmacological and biophysical properties of α + β1 subunit complex or β1-subunit in BKCa channel, we established an expression system that reliably coexpress hSloα + β1 subunit complex in HEK293 cells. The coexpression of hSloα + β1 subunit complex was evaluated by western blotting and immunolocalization, and then the single-channel kinetics and pharmacological properties of expressed hSloα + β1 subunit complex were investigated by cell-attached and outside-out patches, respectively. The results in this study showed that the expressed hSloα + β1 subunit complex demonstrated to be fully functional for its typical single-channel traces, Ca2+-sensitivity, voltage-dependency, high conductance (151 ± 7 pS), and its pharmacological activation and inhibition.  相似文献   

19.
Mechanisms underlying obesity-related vascular dysfunction are unclear. This study examined the effect of diet-induced obesity on expression and function of large conductance Ca(2+)-activated potassium channel (BK(Ca)) in rat pressurized small resistance vessels with myogenic tone. Male Sprague-Dawley rats fed a cafeteria-style high fat diet (HFD; ~30% energy from fat) for 16-20 wk were ~30% heavier than controls fed standard chow (~13% fat). Obesity did not alter BK(Ca) α-subunit function or α-subunit protein or mRNA expression in vessels isolated from the cremaster muscle or middle-cerebral circulations. In contrast, BK(Ca) β(1)-subunit protein expression and function were significantly reduced in cremaster muscle arterioles but increased in middle-cerebral arteries from obese animals. Immunohistochemistry showed α- and β(1)-subunits were present exclusively in the smooth muscle of both vessels. Cremaster muscle arterioles from obese animals showed significantly increased medial thickness, and media-to-lumen ratio and pressurized arterioles showed increased myogenic tone at 30 mmHg, but not at 50-120 mmHg. Myogenic tone was not affected by obesity in middle-cerebral arteries. The BK(Ca) antagonist iberiotoxin constricted both cremaster muscle and middle-cerebral arterioles from control rats; this effect of iberiotoxin was abolished in cremaster muscle arteries only from obese rats. Diet-induced obesity has contrasting effects on BK(Ca) function in different vascular beds, through differential effects on β(1)-subunit expression. However, these alterations in BK(Ca) function had little effect on overall myogenic tone, suggesting that the mechanisms controlling myogenic tone can be altered and compensate for altered BK(Ca) expression and function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号