首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
迄今为止,已有多达上百种的细胞穿膜肽(cell-penetrating peptides,CPPs)被发现报道,但这类多肽分子的入胞能力参差不齐,限制了其作为药物载体的应用。虽然已有多种实验方法可用于细胞穿膜肽入胞的检测,但由于缺乏通用的技术来确切证实CPPs的入胞能力,所以应当结合使用多种方法以降低误差。对不同的技术在检测CPPs入胞时的优缺点进行比较,并针对性地提出比较理想的解决方案,可为制订CPPs入胞标准化检测步骤提供一些参考。  相似文献   

2.
生物大分子药物与传统治疗方式相比作用靶点具有高度的专一性,成为21世纪药物研发中最具发展前景的领域之一,但由于细胞膜的天然屏障作用致使许多潜在的胞内药物靶标无法应用于新药研究。细胞穿膜肽(cell-penetrating peptides,CPP)是一类具有穿膜功能的小分子短肽,可高效携带核酸、蛋白质等生物大分子穿过细胞膜进入胞质发挥功能,在介导生物大分子药物入胞上有着高效、低毒等诸多优势,但仍存在效率低、靶向性差等问题。CPP携带货物分子入胞的方式可以根据是否依赖能量分为直接入胞和内吞。直接入胞依据孔隙形成的方式不同分为四种模型:桶板模型、超环面模型、地毯模型和反向胶团模型。内吞则根据受体的不同又分为巨胞饮、网格蛋白介导的内吞、小窝蛋白介导的内吞、硫酸乙酰肝素蛋白聚糖介导的内吞以及神经毡蛋白-1介导的内吞。CPP自身的类型、浓度、效应分子的物理化学性质以及分子大小都会影响CPP的入胞过程,进而决定CPP携带生物大分子入胞的途径。对CPP介导生物大分子的入胞机制进行综述,为研究更加高效、靶向性强的CPP提供依据,从而推动其在生物、医学领域的应用。  相似文献   

3.
以细胞内物质为靶标的药物(大分子、蛋白质、多肽及核酸)只有穿透细胞膜才能进一步发挥其药效。细胞穿透多肽(穿膜肽)是由少于30个氨基酸残基组成的小肽,它们能够通过与细胞膜相互作用而穿透细胞膜这一天然屏障。穿膜肽大致分为宿主防御肽、基于信号序列的穿膜肽和富含精氨酸的穿膜肽;穿膜肽进入细胞的机制尚未完全阐明,存在倒置微团模型、地毯式模型及打孔模型等假说。穿膜肽能够携带各种物质进入细胞的特性受到人们的关注。我们就穿膜肽的种类、穿膜机制,及其在生物影像学和生物递送系统中的应用做一综述。  相似文献   

4.
细胞穿透肽设计及肿瘤靶向治疗   总被引:1,自引:0,他引:1  
细胞穿透肽是近年来发现的具有穿透生物膜功能,并能介导大分子物质跨膜转导的一类小分子短肽。该肽段以其转导效率高,速度快,生物活性好,对细胞损害小等特点,成为药物导向治疗方法研究领域的热点。肿瘤靶向治疗的一个局限性是不能使药物有效地进入肿瘤细胞内,极大地降低了肿瘤靶向药物治疗的疗效。因此,如何使抗癌药物特定输送至肿瘤细胞群是当前亟需研究设计的课题,本文就特异性靶向穿膜肽在肿瘤靶向治疗方面的设计、应用作一综述。  相似文献   

5.
穿膜肽是一类具有特殊穿膜功能的多肽分子,能携带其它分子甚至超分子颗粒穿膜进入细胞内部.早期研究认为,其进胞是一种无需受体、也不存在饱和状态的非经典胞吞行为.近年研究表明,其穿膜机制可能与其含有的氨基酸种类有很大关系.现在,穿膜肽的穿膜过程称为巨型胞饮行为,它与传统的胞吞形式很相似.当然,还可能存在着其它的进胞方式而没有被证明或发现.关于穿膜肽的应用也是人们最感兴趣的,在很多领域的研究都在进行并不断取得进展.不论是生物界还是医学界,穿膜肽都被认为将是一类非常有发展潜力的多肽分子.  相似文献   

6.
细胞穿膜肽(cell-penetrating peptide,CPP)作为一种体内大分子药物跨膜运输载体被广泛研究和应用。中期因子Midkine(MK)是人体的一种带有肝素结合域(heparin-binding domain,HBD)的生长因子。报道了MK中HBD的部分富含碱性氨基酸的基因序列(命名为MK-S0)与绿色荧光蛋白(EGFP)基因融合表达后,能将EGFP有效地转运入胞内,且其穿膜转运效率高于经典穿膜肽Tat。将MK-S0序列进一步突变优化改造得到的midkine-mutantΔ4(MK-Δ4),其穿膜效率比天然序列来源的MK-S0提高16倍以上,且MK-Δ4的穿膜转运作用适用于多种肿瘤细胞。穿膜机制分析研究结果显示,MK-Δ4可与细胞表面硫酸乙酰肝素结合,随之以巨胞饮形式内吞入胞。采用MTT方法检测的细胞生长抑制试验结果显示,连接有MK-Δ4的苦瓜来源的核糖体失活蛋白MAP30比单独的MAP30对HeLa肿瘤细胞的药效可提升5.8倍,大大提高了这种药物蛋白抑杀肿瘤细胞的效果。由此表明,源于MK的这种经过突变改造的MK-Δ4,可作为一种新型高效的细胞穿膜肽,将药物蛋白有效运输到细胞内发挥抗肿瘤效应。  相似文献   

7.
本文通过查阅并归纳近几年相关文献,较为系统地概述了靶向活性多肽、细胞穿膜肽和靶向细胞穿膜肽等多肽表面修饰脂质体药物递送系统(drug delivery system, DDS)的研究进展。经不同活性多肽表面修饰,或可增强脂质体DDS的靶向性,或可提高药物的细胞摄取率和生物利用度。总之,多肽表面修饰的脂质体在新型DDS研究及应用中具有良好的前景。  相似文献   

8.
细胞穿膜肽(Cell-penetrating peptides,CPPs)是一类能够穿过细胞膜或组织屏障的短肽。CPPs可通过内吞和直接穿透等机制运载蛋白质、RNA、DNA等生物大分子进入细胞内发挥其效应功能。相比于其他非天然的化学分子,CPPs具有生物相容性佳、对细胞造成的毒性小、完成入胞转运后可降解、并能与生物活性蛋白直接融合重组表达等优点,因此成为以胞内分子为靶标的药物递送技术发展的重要工具,并在生物医学研究领域具有良好的应用前景。文中针对CPPs的分类特点、入胞转运机制及其治疗应用的新近研究进展进行综述和讨论。  相似文献   

9.
吴强  徐祥  梁华平  张明 《生命的化学》2005,25(4):304-306
穿膜肽(penetratin)是果蝇的触角足同源异形域的DNA结合结构域第三个片段的商品名,由16个氨基酸残基组成,它可以介导多种疏水大分子进入活体细胞质内而不破坏细胞膜的完整性;其最大的特点是可以介导多种大分子进入细胞内,并且无需外源能量,分子作为整体插入细胞内,穿膜过程不需解折叠。该发现开辟了药物进入细胞的新的介导途径。该文介绍穿膜肽的结构特点、穿膜机制、应用及局限性。  相似文献   

10.
TAT蛋白转导肽是HIV-1病毒编码的一段富含碱性氨基酸序列的多肽,能够高效介导多种外源生物大分子通过多种膜性结构,如细胞质膜和血脑屏障等。为探索TAT蛋白转导肽介导的秀丽线虫体内外源蛋白跨膜转导作用,以EGFP为报告基因结合常规分子克隆技术构建了原核表达载体pET28b-EGFP和pET28-TAT-EGFP,继而利用诱导剂IPTG(终浓度1mmol/L)诱导表达了靶蛋白并结合荧光显微观察、SDS-PAGE和Western blot等鉴定技术获得表达靶蛋白的大肠杆菌BL21(DE3)细胞,最后将其涂布到含有Kana+的LB固体培养基上直接饲喂野生型N2株系线虫,利用荧光显微镜观察绿色荧光信号在线虫体内的分布。结果证明,TAT-EGFP融合蛋白较之于EGFP可高效、可溶性表达,而且通过直接饲喂秀丽线虫表达靶蛋白的大肠杆菌48小时后,TAT-EGFP荧光信号明显分布于线虫肠壁细胞,而EGFP荧光信号则分布在秀丽线虫肠腔,空载体对照组未见任何荧光信号,说明TAT蛋白转导肽能够高效介导外源蛋白在秀丽线虫体内跨膜转导。同时,通过比较空载体对照组与实验组线虫微分干涉图像,未见线虫出现明显的细胞形态变化,说明TAT蛋白转导肽介导的外源蛋白跨膜转导作用是安全的,为在秀丽线虫体内直接研究外源蛋白的功能以及进行蛋白药物的研发提供了重要参考。  相似文献   

11.
Cell-penetrating peptides (CPPs) are an attractive tool for delivering membrane-impermeable compounds, including anionic biomacromolecules such as DNA and RNA, into living cells. Amphipathic helical peptides composed of hydrophobic amino acids and cationic amino acids are typical CPPs. In the current study, we designed amphipathic helical 12-mer peptides containing α,α-disubstituted α-amino acids (dAAs), which are known to stabilize peptide secondary structures. The dominant secondary structures of peptides in aqueous solution differed according to the introduced dAAs. Peptides containing hydrophobic dAAs and adopting a helical structure exhibited a good cell-penetrating ability. As an application of amphipathic helical peptides, small interfering RNA (siRNA) delivery into living human hepatoma cells was investigated. One of the peptides containing dAAs dipropylglycine formed stable complexes with siRNA at appropriate zeta-potential and size for intracellular siRNA delivery. This peptide showed effective RNA interference efficiency at short peptide length and low concentrations of peptide and siRNA. These findings will be helpful for the design of amphipathic helical CPPs as intracellular siRNA delivery.  相似文献   

12.
One of the major obstacles which are opposed to the success of anticancer treatment is the cell resistance that generally develops after administration of commonly used drugs. In this study, we try to overcome the tumour cell resistance of doxorubicin (Dox) by developing a cell-penetrating peptide (CPP)-anticancer drug conjugate in aim to enhance its intracellular delivery and that its therapeutic effects. For this purpose, two cell-penetrating peptides, penetratin (pene) and tat, derived from the HIV-1 TAT protein, were chemically conjugated to Dox. The cytotoxicity, intracellular distribution and uptake were accessed in CHO cells (Chinese Hamster Ovarian carcinoma cells), HUVEC (Human Umbilical Vein Endothelial Cells), differentiated NG108.15 neuronal cell and breast cancer cells MCF7drug-sensitive or MDA-MB 231 drug-resistant cell lines. The conjugates showed different cell killing activity and intracellular distribution pattern by comparison to Dox as assessed respectively by MTT-based colorimetric cellular cytotoxicity assay, confocal fluorescence microscopy and FACS analysis. After treatment with 3 μM with Dox-CPPs for 2 h, pene increase the Dox cytotoxicity by 7.19-fold in CHO cells, by 11.53-fold in HUVEC cells and by 4.87-fold in MDA-MB 231 cells. However, cytotoxicity was decreased in NG108.15 cells and MCF7. Our CPPs-Dox conjugate proves the validity of CPPs for the cytoplasmic delivery of therapeutically useful molecules and also a valuable strategy to overcome drug resistance.  相似文献   

13.
小RNA药物应用于临床的主要技术瓶颈在于如何高效、低毒地将小RNA分子传递到它发挥功能的场所.基于细胞穿透肽在小RNA透皮给药的临床应用中所取得的进展,本文系统评述了近年来细胞穿透肽在小RNA的体内、体外传递方面的研究动态,分析了细胞穿透肽的结构改造对肽/小RNA复合物转染进入细胞发挥功能的影响,展望了细胞穿透肽作为小RNA的体内药物传递载体的发展方向.  相似文献   

14.
Cell penetrating peptides (CPPs) are short amphipathic and cationic peptides that are rapidly internalized across cell membranes. They can be used to deliver molecular cargo, such as imaging agents (fluorescent dyes and quantum dots), drugs, liposomes, peptide/protein, oligonucleotide/DNA/RNA, nanoparticles and bacteriophage into cells. The utilized CPP, attached cargo, concentration and cell type, all significantly affect the mechanism of internalization. The mechanism of cellular uptake and subsequent processing still remains controversial. It is now clear that CPP can mediate intracellular delivery via both endocytic and non-endocytic pathways. In addition, the orientation of the peptide and cargo and the type of linkage are likely important. In gene therapy, the designed cationic peptides must be able to 1) tightly condense DNA into small, compact particles; 2) target the condensate to specific cell surface receptors; 3) induce endosomal escape; and 4) target the DNA cargo to the nucleus for gene expression. The other studies have demonstrated that these small peptides can be conjugated to tumor homing peptides in order to achieve tumor-targeted delivery in vivo. On the other hand, one of the major aims in molecular cancer research is the development of new therapeutic strategies and compounds that target directly the genetic and biochemical agents of malignant transformation. For example, cell penetrating peptide aptamers might disrupt protein-protein interactions crucial for cancer cell growth or survival. In this review, we discuss potential functions of CPPs especially for drug and gene delivery in cancer and indicate their powerful promise for clinical efficacy.  相似文献   

15.
Targeted delivery of antitumor drugs is especially important for tumor therapy. Cell‐penetrating peptides (CPPs) have been shown to be very effective drug carriers for tumor therapy. However, most CPPs lack tumor cell specificity. Here, we identified a highly efficient CPP, CAT, from the newly identified buffalo‐derived cathelicidin family, which exhibits a preferential binding capacity for multiple tumor cell lines and delivers carried drug molecules into cells. CAT showed an approximately threefold to sixfold higher translocation efficiency than some reported cell‐penetrating antimicrobial peptides, including the well‐known classical CPP TAT. Moreover, the delivery efficiency of CAT was greater in a variety of tested tumor cells than in normal cells, especially for the human hepatoma cell line SMMC‐7721, for which delivery was 7 times more efficient than the normal human embryonic lung cell line MRC‐5, according to fluorescent labeling experiment results. CAT was conjugated to the Momordica charantia‐derived type‐I ribosome‐inactivating protein MAP 30, and the cytotoxicity of the MAP 30‐CAT fusion protein in the tumor cell line SMMC‐7721 was significantly enhanced compared with that of the unconjugated MAP 30. The IC50 value of MAP 30‐CAT was approximately 83 times lower than the IC50 value of the original MAP 30. Interestingly, the IC50 value of MAP 30 alone for MRC‐5 was approximately twofold higher than the value for SMMC‐7721, showing a small difference. However, when MAP 30 was conjugated to CAT, the difference in IC50 values between the two cell lines was significantly increased by 38‐fold. The results of the flow cytometric detection of apoptosis revealed that the increase in cytotoxicity after CAT conjugation was mainly caused by the increased induction of apoptosis by the fusion protein. These results suggest that CAT, as a novel tumor‐homing CPP, has great potential in drug delivery applications in vivo and will be beneficial to the development of tumor therapeutics.  相似文献   

16.
Cell-penetrating peptides (CPPs) have been developed as drug, protein, and gene delivery tools. In the present study, arginine (Arg)-rich CPPs containing unnatural amino acids were designed to deliver plasmid DNA (pDNA). The transfection ability of one of the Arg-rich CPPs examined here was more effective than that of the Arg nonapeptide, which is the most frequently used CPP. The transfection efficiencies of Arg-rich CPPs increased with longer post-incubation times and were significantly higher at 48-h and 72-h post-incubation than that of the commercially available transfection reagent TurboFect. These Arg-rich CPPs were complexed with pDNA for a long time in cells and effectively escaped from the late endosomes/lysosomes into the cytoplasm. These results will be helpful for designing novel CPPs for pDNA delivery.  相似文献   

17.
Cell‐penetrating peptides (CPPs) have been shown to be potential drug carriers for cancer therapy. The inherently low immunogenicity and cytotoxicity of human‐derived CPPs make them more suitable for intracellular drug delivery compared to other delivery vehicles. In this work, the protein transduction ability of a novel CPP (termed HBP) derived from the heparin‐binding domain of HB‐EGF was evaluated. Our data shows, for the first time, that HBP possesses similar properties to typical CPPs and is a potent drug delivery vector for improving the antitumor activity of impermeable MAP30. The intrinsic bioactivities of recombinant MAP30‐HBP were well preserved compared to those of free MAP30. Furthermore, HBP conjugated to the C‐terminus of MAP30 promoted the cellular uptake of recombinant MAP30‐HBP. Moreover, the fusion of HBP to MAP30 gave rise to significantly enhanced cytotoxic effects in all of the tumor cell lines tested. In HeLa cells, this cytotoxicity was mainly caused by the induction of cell apoptosis. Further investigation revealed that HBP enhanced MAP30‐induced apoptosis through the activation of the mitochondrial‐ and death receptor‐mediated signaling pathways. In addition, the MAP30‐HBP fusion protein caused more HeLa cells to become arrested in S phase compared to MAP30 alone. These results highlight the MAP30‐HBP fusion protein as a promising drug candidate for cancer therapy and demonstrate HBP, a novel CPP derived from human HB‐EGF, as a new potential vector for antitumor drug delivery. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

18.
Cell-penetrating peptides (CPPs) are oligopeptides that can permeate the cell membrane. The use of a CPP-mediated transport system could be an excellent method for delivering cell-impermeable substances such as proteins, antibodies, antisense oligonucleotides, siRNAs, plasmids, drugs, fluorescent compounds, and nanoparticles as covalently or noncovalently conjugated cargo into cells. Nonetheless, the mechanisms through which CPPs are internalized remain unclear. Endocytosis and direct translocation through the membrane are the generally accepted routes. Internalization via both pathways can occur simultaneously, depending on cellular conditions. However, the peculiar property of CPPs has attracted many researchers, especially in drug discovery or development, who intend to deliver impermeable substances into cells through the cell membrane. The delivery of drugs using CPPs may non-invasively solve the problem of drug penetration into cells with the added benefit of low cytotoxicity. Moreover, macromolecules can also be delivered by this transport system. In this review, I discuss the possibilities and advantages of substance delivery into cells using CPPs.  相似文献   

19.
Successful and effective cellular delivery remains a main obstacles in the medical field. The use of cell‐penetrating peptides (CPPs) has become one of the most important tools for the internalisation of a wide range of molecules including pharmaceuticals. It is still difficult to choose one CPP for one biological application because there is no ubiquitous CPP meeting the diverse requirements. In our case, we are looking for a suitable CPP to deliver the pro‐apoptotic KLA peptide (KLAKLAKKLAKLAK) by a simple co‐incubation strategy. For that reason, we selected three different cell lines (fibroblastic, cancerous and macrophagic cells) and studied the uptake and subcellular localisation of six different CPPs alone as well as mixed with the KLA peptide. Furthermore, we used the CPPs with a carboxyamidated or a carboxylated C‐terminus and analysed the impact of the C‐termini on internalisation and cargo delivery. We could clearly showed that the cellular CPP uptake is not only dependent on the used CPP and cell line but also highly affected by its chemical nature of the C‐terminus (uptake: carboxyamidated CPPs > carboxylated CPPs) and can influence its cellular localisation. We successfully delivered the KLA peptide in the three cell lines and learned that here as well, the C‐terminus is crucial for an effective peptide delivery. Finally, we induced apoptosis in mouse leukaemic monocyte macrophage (RAW 264.7) and in human breast adenocarcinoma (MCF‐7) cells using the mixture of amidated MPG peptide : KLA and in african green monkey kidney fibroblast (Cos‐7) cells using carboxylated integrin peptide : KLA. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号