首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 985 毫秒
1.
选育到一株对16β-甲基,17α,21-二羟基孕甾-1,4-二烯-3,20-二酮(Ⅱa)11α-羟基化活性强的犁头霉A28菌株,并发现底物21-乙酰化(Ⅱb)可明显提高11α-羟基化的能力.在适宜的转化条件下,Ⅱb投料浓度0.5%,产物16β-甲基-11α,11α,21-三羟基孕甾-1,4-二烯-3,20-二酮(Ⅲ)收率为73%,结构经波谱分析确认.  相似文献   

2.
选育到一株对16β-甲基-17α,21-二羟基孕甾-1,4-二烯3,20-二酮(Ⅱa)11α-羟基化活性强的犁头霉A28菌株,并发现底物21乙酰化(Ⅱb)可明显提高11α-羟基化的能力。在适宜的转化条件下,Ⅱb投料浓度0.5%,产物16β-甲基-11α,17α,21-三羟基孕甾-1,4-二烯3,20-二酮(Ⅲ)收率为73%,结构经波谱分析确认。  相似文献   

3.
本文报道了简单节杆菌A69-2和球孢白僵菌AS69同时存在下对16α-甲基-17α-羟基孕甾-4.烯-3,20-二酮-21-醋酸酯(16MRSA)的协周转化作用。 这种协同转化怍用既能解除16α-甲基-11α,17a,21-三羟基孕甾-4-烯-3,20-二酮(16MllaHC)对球孢白僵菌AS69的11α羟化酶的抑制作用,又可降低高浓度的16M11aHC对节杆菌A69—2脱氢酶活性的影响,同时还能抑制节杆菌脱氢过程的副反应。在底物浓度为0.15%(W/V)时,l6α-甲基-11α,17a,21-三羟基孕甾-1,4-二烯-3,20-二酮(16MDHC)的收率约50%,故是制备1 6MDHC的一种理想的微生物学方法。  相似文献   

4.
考察了有机溶剂对黑根霉甾体11α-羟基化反应中转化底物16α,17α-环氧孕甾酮生成11 α, 16α,17α-环氧孕甾酮的转化率和细胞色素P450酶浓度的影响.向培养28 h的培养液中添加终浓度0.035 mol/L的丙酮和1.75 g/L的底物,继续转化48 h.与未添加丙酮相比,添加丙酮后的底物转化率和细胞色素P450酶表达量分别提高了6.8%和30%.说明丙酮添加可明显提高黑根霉甾体11α-羟基化能力和细胞色素P450酶的表达.  相似文献   

5.
对α-氯丙酸脱卤酶发酵动力学进行了研究。基于Logistic方程和Luedeking-Piret方程,得到了描述Pseudomonas W20菌发酵过程菌体生长、α-氯丙酸脱卤酶生成及基质消耗的动力学数学模型和模型参数,对试验数据与模型进行了验证比较,模型计算值与试验结果拟合良好,平均相对误差大部分小于10%;对脱卤酶反应动力学进行了研究,结果表明脱卤酶的脱卤反应基本符合米氏方程,并求得最大反应速率V_(max)=1.11×10~(-5)mol/(g·min),表观米氏常数K_m=3.72×10~(-3)mol/L。  相似文献   

6.
为进一步研究胎羊3β,20α-羟类甾醇氧化还原酶活性中心的特性,我们合成了放射性的16α-溴乙酸基孕酮和5α-二氢睾酮-17-溴乙酸酯作为亲和标记试剂。二者都是以不可逆的方式,活性位点定向地竞争性抑制酶的活性。当酶的浓度为1μmol/L,抑制剂的浓度为100μmol/L时,使酶失去一半活性所需时间(t0.5)分别为75 min(16α-BAP)和480 min(5α-DTB)。当在反应混合液中有底物孕酮或5α-二氮睾酮存在时,可降低抑制剂对酶活性的抑制速度。把标记的酶用盐酸水解,用氨基酸分析仪进行分析,最后确定,位于酶的活性中心的被标记氨基酸为组氨酸,它可能在氧化还原反应过程中发挥着重要作用。  相似文献   

7.
11α,17α-双羟基黄体酮是甾体激素类药物的重要中间体,工业上主要利用霉菌对17α-羟基黄体酮的11α羟化反应制备。对赭曲霉的11α羟化酶及其关键氨基酸位点展开研究,为深入解析酶的催化机理提供基础数据。利用底物转化实验探究了10个羟化反应常用霉菌对17α-羟基黄体酮的转化能力,考察了赭曲霉来源的11α羟化酶CYP68J5在不同表达系统中的活性,借助结构预测、分子对接和定点突变等手段对CYP68J5的关键氨基酸位点进行解析。结果表明,赭曲霉的转化能力最强,转化时间60 h的摩尔产率达到最大值,为78.55%;其羟化酶CYP68J5在酿酒酵母中的表达活性最高;位于底物结合口袋附近的D118、F216、M488是CYP68J5的关键氨基酸位点,这些位点在维持酶的结构稳定性上发挥重要作用,是后续分子改造的潜在重要靶点。  相似文献   

8.
3β,20α-羟基甾体脱氢酶(3β,20α-Hydroxysteroid dehydrogenase,3β,20α-HSD)是从胎羊血中分离得到的。分子量为35kD。该酶以NADPH为辅酶,有两种底物。以孕酮为底物时,Km=30.8μmol/L,Vmax=0.7nmol min~(-1)(nmol enzyme)~(-1);以5α-二氢睾酮(5α-Dihydrotestosterone,5α-DHT)为底物时,Km=74μmol/L,Vmax=1.3nmol min~(-1)(nmol enzyme)~(-1)。5α-DHT竞争性抑制20α-还原活性,Ki=102μmol/L。16α-溴代乙酰氧基(16α-Bromo acetoxyprogesterone,16α-BAP)是3β,20α-HSD不可逆竞争性抑制剂,t_(1/2)=75min。对3β和20α还原活性的抑制常数Ki分别为23μmol/L和58μmol/L。  相似文献   

9.
【目的】筛选鉴定一株产酯酶用于选择性拆分(R,S)-α-乙基-2-氧-1-吡咯烷乙酸甲酯的菌株,利用该菌株固定化细胞催化拆分外消旋底物。【方法】通过富集培养、罗丹明B平板初筛及复筛培养获得一株选择性拆分(R,S)-α-乙基-2-氧-1-吡咯烷乙酸甲酯的菌株,通过对其形态、生理生化特征及16S r DNA序列分析,确立该菌株系统发育地位。优化了利用硅藻土-戊二醛吸附交联法对该菌体细胞固定化的条件,研究固定化细胞催化性质及操作稳定性。【结果】该菌为革兰氏阴性菌,鉴定其为甲基球状菌属(Methylopila)。固定化体系最优条件:聚乙烯亚胺0.15%(V/V),戊二醛0.2%(V/V),硅藻土6 g/L,菌体质量浓度100 g/L。与游离细胞相比,固定化细胞最适p H由8.0变为8.5,最适温度由35°C变为40°C,p H稳定性和温度稳定性都有所提高。Cu~(2+)、Mn~(2+)、Ca~(2+)能促进酶活,Zn~(2+)、Fe~(2+)抑制酶活。固定化细胞的有机溶剂耐受性较游离细胞有所提高。动力学分析细胞固定化后Km值变大,底物亲和力降低。利用固定化细胞水解(R,S)-α-乙基-2-氧-1-吡咯烷乙酸甲酯,底物浓度200 g/L,反应20 h,保留构型为S型,得率47.8%,对映体过量值ees为99.4%,重复使用12次后仍保留初始酶活的80%以上。【结论】开发了利用Methylopila sp.cxzy-L013固定化细胞择性拆分(R,S)-α-乙基-2-氧-1-吡咯烷乙酸甲酯的工艺,该工艺具有良好的工业应用前景。  相似文献   

10.
葡枝根霉NG0305酶催化甾体C11α-羟基化的研究   总被引:6,自引:3,他引:3  
应用本实验室保藏的葡枝根霉Rhizopus stolonifer NG0305对甾体化合物烯睾丙内酯(3-oxo-4,6-diene-Pregna-17-aloha-hydroxy-21-carboxylic acid gama-lactone)进行酶催化C11α-羟基化反应的研究。研究结果表明,菌体培养的碳源供应对菌体所产羟化酶的活力有重要影响。采用葡萄糖和淀粉组合碳源,并加入适量的黑曲霉糖化酶的方式,解决了葡萄糖抑制的问题,并缩短了菌体培养反应时间,得到高羟化转化率。酶转化反应88h后,提取吸附在菌丝球内的产物,应用液相色谱测定,结果表明C11α-羟基化转化率达到了53.0%。  相似文献   

11.
坎利酮是合成心血管疾病药物Eplerenone的重要中间体,其关键的C11α-羟化反应可以由微生物转化完成。本实验室保藏的根霉(Rhizopus sp.SIPI-0602)可特异性地将坎利酮转化为化合物SIPI-11。通过测定与分析SIPI-11的UV、MS和NMR图谱数据,确定化合物SIPI-11为11α-羟坎利酮。摇瓶转化工艺研究表明,底物投料浓度不高于6g/L时,11α-羟坎利酮的转化率可达到90%以上。  相似文献   

12.
新月弯孢霉AS 3.4381对新型甾体底物C11β-羟基化   总被引:1,自引:0,他引:1  
应用本实验室保藏的新月弯孢霉Curvularia lunataAS 3.4381对新型甾体化合物(Ⅰ)(16α,17β-二甲基-17-丙酰基雄甾-1,4-二烯-3-酮)作为底物进行生物转化C11β-羟基化反应的研究。实验研究结果表明,采用Ⅱ级发酵的工艺,收获新月弯孢霉菌丝体作为生物催化剂,在磷酸缓冲液介质体系中,对化合物Ⅰ的C11位实现β羟基化,生成皮质激素药物。测试数据TLC,MS,IR及1H NMR证明了该产物的化学结构,表明生物转化产物为C11β-羟基-16α,17β-二甲基-17-丙酰基雄甾-1,4-二烯-3-酮。  相似文献   

13.
9β,11β-环氧-17α,21-二羟基-16β-甲基孕-1,4-二烯-3,20-二酮(Ⅳ)是生产9-氟甾体激素的关键前体,以9β,11β-环氧-17α,21-二羟基-16β-甲基孕-4-烯-3,20-二酮-21-醋酸酯(Ⅰ)为底物合成Ⅳ是工业化生产Ⅳ的重要方法。通过比较分枝杆菌全细胞转化法与细胞裂解液转化法,发现分枝杆菌全细胞只能将Ⅰ转化为9β,11β-环氧-17α,21-二羟基-16β-甲基孕-4-烯-3,20-二酮(Ⅱ),而细胞裂解液可以有效地将Ⅰ转化为Ⅳ,其反应机制为底物Ⅰ自发水解为中间体Ⅱ,Ⅱ在C_(1,2)位脱氢酶(KSTD)的催化作用下发生C_(1,2)位脱氢反应生成产物Ⅳ。为进一步提高产物Ⅳ的转化率,利用基因工程手段在分枝杆菌中分别过表达编码KSTD的关键基因:kst D、kst D3和kstD_M,提高脱氢反应效率,结果表明1 g/L底物Ⅰ在pH7.0的重组菌株MS136-kst D_M细胞裂解液中反应45h,Ⅳ的转化率为78.4%,比出发菌株提高了38.9%;并优化缓冲液pH,提高反应速率,结果表明1 g/L底物Ⅰ在pH7.5的重组菌株MS136-kstD_M细胞裂解液中反应45 h,Ⅳ的转化率为92.8%,比出发菌株提高了63.4%。  相似文献   

14.
研究了利用嗜麦芽黄单胞菌BT-112(Xanthomonas maltophilia BT-112)游离细胞生物催化合成α-熊果苷,系统探讨了温度、对苯二酚浓度、对苯二酚与蔗糖摩尔比、反应时间、转速、细胞浓度、磷酸缓冲溶液pH值和浓度对反应转化率的影响。最佳反应条件为:反应温度为25℃,菌体对对苯二酚的最大耐受度为30mmol/L,蔗糖和对苯二酚的摩尔比为20∶1,反应时间为45h,摇床转速为160r/min,细胞浓度为85g/L,磷酸缓冲溶液浓度为25mmol/L、pH值为8.0。在此条件下α-熊果苷转化率高达86.7%(以对苯二酚计算)。  相似文献   

15.
利用紫外杀菌灯(λ=254nm,30w)作为光源,采用鱼腥藻悬浮体系,研究了水溶液中17α-乙炔基雌二醇(EE2)光降解反应中影响降解速率的相关因素。实验结果表明,EE2浓度在5—20mg/L范围内,光降解效率与EE2初始浓度成正比,反应是假一级反应。藻的浓度对EE2的降解效率有一定的影响。光降解产物的红外光谱(IR)表明,EE2在紫外光作用下光降解破坏了苯环,开环结果生成了C=0结构产物,同时表明可能发生脱碳反应。  相似文献   

16.
微乳体系中11β-羟基甲羟孕酮的C1,2生物脱氢   总被引:1,自引:0,他引:1  
为改善过程传质,提高甾类药物中间体11β-羟基甲羟孕酮C1,2生物脱氢转化率,采用简单节杆菌Arthrobacter simplex UR016菌株在Tween-80/乙醇/食油/水构成的微乳体系中进行生物脱氢,并考察了微乳体系组成、转化温度、投料浓度对脱氢反应的影响。结果表明:以菌体培养液作为水相,食油作为油相构建微乳体系,食油最适加量为10g/L,表面活性剂Tween-80加量为4g/L;底物经醇溶后水析投料,乙醇最适加量为发酵液体积的7%(V/V);最适转化温度为33oC;当底物浓度为4g/L时,在构建的微乳体系中转化46h,脱氢转化率达88.6%,与水相转化工艺相比提高了66.2%。在该体系中疏水性11β-羟基甲羟孕酮底物得到了有效的增溶和扩散,生物脱氢转化率明显提高。  相似文献   

17.
17α羟化酶是转化孕酮制备各种孕激素药物中间体的关键酶。为提高该酶在生物催化中的特异性羟基化能力,本研究将来源于纤维素黏性细菌(Sorangiumcellulosum)Soce56的羟化酶CYP260A1与大肠杆菌(Escherichia coli) K-12来源的Fpr和牛肾上腺来源的Adx4-108组建成新的电子传递系统,用于孕酮的生物转化。通过对CYP260A1进行选择性突变,获得17α羟化酶活性显著提高的突变体S276I,经体外催化体系的优化设计,使17α-OH孕酮的产率达到58%。此外,利用定点突变技术探究铁氧还蛋白Adx4-108的模拟磷酸化对17α羟化酶活性的影响,结果显示,突变体Adx4-108T69E向S276I传递电子,进一步增强了对孕酮C17位的特异性,17α-OH孕酮的产率最终提高到74%。本研究为细菌来源的17α羟化酶特异性转化生产17α-OH孕酮提供了新的方案,为孕激素类药物在工业上利用生物转化法生产奠定了理论基础。  相似文献   

18.
研究了一种新型的流加方法──恒pH流加葡萄糖法,用于培养重组大肠杆菌生产人肿瘤坏死因子-α。流加后培养液中菌体OD(600)达到9.0,是在LB培养基培养的15倍,而α-肿瘤坏死因子的比活保持(1.05±0.11)×105u/mg,并建立了菌体生长的动力学方程。  相似文献   

19.
赵连真  张梁  石贵阳 《微生物学通报》2013,40(12):2161-2170
【目的】克隆谷氨酸棒杆菌来源L-天冬氨酸α-脱羧酶基因, 实现其在大肠杆菌中的异源表达, 并进行酶转化L-天冬氨酸合成β-丙氨酸的研究。【方法】PCR扩增谷氨酸棒杆菌L-天冬氨酸α-脱羧酶基因pand, 构建表达载体pET24a(+)-Pand, 转化宿主菌大肠杆菌BL21(DE3), 对重组菌进行诱导表达, 表达产物经DEAE离子交换层析和G-75 分子筛层析纯化后进行酶学性质研究, 然后进行酶转化实验, 说明底物和产物对酶转化的影响。【结果】重组菌SDS-PAGE分析表明Pand表达量可达菌体总蛋白的50%以上, AccQ·Tag法检测酶活达到94.16 U/mL。该重组酶最适反应温度为55 °C, 在低于37 °C时保持较好的稳定性, 最适pH为6.0, 在pH 4.0?7.0范围内有较好的稳定性。酶转化实验说明: 底物L-天冬氨酸和产物β-丙氨酸对转化反应均有抑制作用; 实验建立了较优的酶转化反应方式, 在加酶量为每克天冬氨酸3 000 U时, 以分批加入固体底物L-天冬氨酸的形式, 使100 g/L底物转化率达到97.8%。【结论】重组L-天冬氨酸α-脱羧酶在大肠杆菌中获得高效表达, 研究了酶转化生产β-丙氨酸的影响因素, 为其工业应用奠定了基础。  相似文献   

20.
利用重组大肠杆菌Escherichia coli Rosetta(DE3)/pET-SPase发酵生产蔗糖磷酸化酶(EC 2.4.1.7,Sucrose phosphorylase,SPase)。收集的菌体经高压破碎后离心得到粗酶液,通过镍NTA亲和层析、超滤除盐后得到电泳纯的SPase,纯化后的SPase的比酶活是原来的2.1倍,酶活回收率达到82.7%。经SDS-PAGE电泳测定,重组SPase的分子量约为59 kDa。该酶在不高于37℃,pH 6.0~6.7的条件下比较稳定,最适催化温度与最适催化pH分别为37℃,pH 6.7,该酶对蔗糖的米氏常数(Km)为7.3 mmol/L,最大反应速率(Vmax)为0.2μmol/(min.mg)。此外文中还以蔗糖和氢醌为底物,利用重组SPase催化合成α-熊果苷。其最佳反应条件为:20%蔗糖,200 U/mL的酶液,1.6%氢醌,pH 6.0~6.5,25℃,反应21 h。α-熊果苷的摩尔产率为78.3%,α-熊果苷的产量为31 g/L。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号