首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Development of ectodermal appendages, such as hair, teeth, sweat glands, sebaceous glands, and mammary glands, requires the action of the TNF family ligand ectodysplasin A (EDA). Mutations of the X-linked EDA gene cause reduction or absence of many ectodermal appendages and have been identified as a cause of ectodermal dysplasia in humans, mice, dogs, and cattle. We have generated blocking antibodies, raised in Eda-deficient mice, against the conserved, receptor-binding domain of EDA. These antibodies recognize epitopes overlapping the receptor-binding site and prevent EDA from binding and activating EDAR at close to stoichiometric ratios in in vitro binding and activity assays. The antibodies block EDA1 and EDA2 of both mammalian and avian origin and, in vivo, suppress the ability of recombinant Fc-EDA1 to rescue ectodermal dysplasia in Eda-deficient Tabby mice. Moreover, administration of EDA blocking antibodies to pregnant wild type mice induced in developing wild type fetuses a marked and permanent ectodermal dysplasia. These function-blocking anti-EDA antibodies with wide cross-species reactivity will enable study of the developmental and postdevelopmental roles of EDA in a variety of organisms and open the route to therapeutic intervention in conditions in which EDA may be implicated.  相似文献   

2.
3.
Permanent correction of an inherited ectodermal dysplasia with recombinant EDA   总被引:12,自引:0,他引:12  
X-linked hypohidrotic ectodermal dysplasia (XLHED; OMIM 305100) is a genetic disorder characterized by absence or deficient function of hair, teeth and sweat glands. Affected children may experience life-threatening high fever resulting from reduced ability to sweat. Mice with the Tabby phenotype share many symptoms with human XLHED patients because both phenotypes are caused by mutations of the syntenic ectodysplasin A gene (Eda) on the X chromosome. Two main splice variants of Eda, encoding EDA1 and EDA2, engage the tumor necrosis factor (TNF) family receptors EDAR and XEDAR, respectively. The EDA1 protein, acting through EDAR, is essential for proper formation of skin appendages; the functions of EDA2 and XEDAR are not known. EDA1 must be proteolytically processed to a soluble form to be active. Here, we show that treatment of pregnant Tabby mice with a recombinant form of EDA1, engineered to cross the placental barrier, permanently rescues the Tabby phenotype in the offspring. Notably, sweat glands can also be induced by EDA1 after birth. This is the first example of a developmental genetic defect that can be permanently corrected by short-term treatment with a recombinant protein.  相似文献   

4.
EDA-A1 and EDA-A2 are members of the tumor necrosis factor family of ligands. The products of alternative splicing of the ectodysplasin (EDA) gene, EDA-A1 and EDA-A2 differ by an insertion of two amino acids and bind to distinct receptors. The longer isoform, EDA-A1, binds to EDAR and plays an important role in sweat gland, hair, and tooth development; mutations in EDA, EDAR, or the downstream adaptor EDARADD cause hypohidrotic ectodermal dysplasia. EDA-A2 engages the receptor XEDAR, but its role in the whole organism is less clear. We have generated XEDAR-deficient mice by gene targeting and transgenic mice expressing secreted forms of EDA-A1 or EDA-A2 downstream of the skeletal muscle-specific myosin light-chain 2 or skin-specific keratin 5 promoter. Mice lacking XEDAR were indistinguishable from their wild-type littermates, but EDA-A2 transgenic mice exhibited multifocal myodegeneration. This phenotype was not observed in the absence of XEDAR. Skeletal muscle in EDA-A1 transgenic mice was unaffected, but their sebaceous glands were hypertrophied and hyperplastic, consistent with a role for EDA-A1 in the development of these structures. These data indicate that XEDAR-transduced signals are dispensable for development of ectoderm-derived organs but might play a role in skeletal muscle homeostasis.  相似文献   

5.
6.
Ectodysplasin A (EDA) is a ligand of the tumor necrosis factor (TNF) family that has been shown to play a crucial role in ectodermal differentiation. Mutations of the syntenic ectodysplasin A gene (Eda) are responsible for Tabby (Ta) phenotype in mice and human X-linked hypohidrotic ectodermal dysplasia (XLHED). EDA-A1 and EDA-A2 are the two main splice variants of Eda, which differ from each other in only two amino acid residues and engage the tumor necrosis factor (TNF) family receptors EDAR and XEDAR, respectively. We have used the baculovirus/insect cell system to express the recombinant EDA proteins fused to the Fc portion of a truncated human IgG1 immunoglobulin heavy chain. Immunoadhesins (4.5-4.7 mg/L) from crude supernatant could be purified to near homogeneity by using rProtein A affinity chromatography. The purified EDA immunoadhesins were endowed with ligand-binding activity as they could bind EDAR or XEDAR on the surface of 293T cells that had been transiently transfected with the corresponding plasmids. Functional activities of EDA immunoadhesins were demonstrated by their ability to activate the NF-kappaB pathway in cells expressing their cognate receptors. These results open up the possibility of obtaining large amounts of purified EDA proteins to investigate EDAR/XEDAR related signaling pathways and for the treatment of patients with X-linked hypohidrotic ectodermal dysplasia.  相似文献   

7.
8.
Patients with defective ectodysplasin A (EDA) are affected by X-linked hypohidrotic ectodermal dysplasia (XLHED), a condition characterized by sparse hair, inability to sweat, decreased lacrimation, frequent pulmonary infections, and missing and malformed teeth. The canine model of XLHED was used to study the developmental impact of EDA on secondary dentition, since dogs have an entirely brachyodont, diphyodont dentition similar to that in humans, as opposed to mice, which have only permanent teeth (monophyodont dentition), some of which are very different (aradicular hypsodont) than brachyodont human teeth. Also, clinical signs in humans and dogs with XLHED are virtually identical, whereas several are missing in the murine equivalent. In our model, the genetically missing EDA was compensated for by postnatal intravenous administration of soluble recombinant EDA. Untreated XLHED dogs have an incomplete set of conically shaped teeth similar to those seen in human patients with XLHED. After treatment with EDA, significant normalization of adult teeth was achieved in four of five XLHED dogs. Moreover, treatment restored normal lacrimation and resistance to eye and airway infections and improved sweating ability. These results not only provide proof of concept for a potential treatment of this orphan disease but also demonstrate an essential role of EDA in the development of secondary dentition.  相似文献   

9.
10.
Many traits evolve in parallel in widely separated populations. The evolutionary radiation of threespine sticklebacks provides a powerful model for testing the molecular basis of parallel evolution in vertebrates. Although marine sticklebacks are completely covered with bony armor plates, most freshwater populations have dramatic reductions in plates. Recent genetic studies have shown that major changes in armor patterning are likely due to regulatory alterations in the gene encoding the secreted signaling molecule ectodysplasin (EDA). In mammals, mutations in many different components of the EDA-signaling pathway produce similar changes in hair, teeth, sweat glands, and dermal bones. To test whether other genes in the EDA pathway also control natural variation in armor plates, we identified and mapped stickleback EDA Receptor (EDAR), the EDAR-Associated Death Domain adaptor, Tumor Necrosis Factor Receptor (TNFR) SuperFamily member 19, its adaptor TNFR-Associated Factor 6, and the downstream regulator nuclear factor kappa B Essential Modulator (NEMO). In contrast to the diversity of genes underlying ectodermal dysplasia disease phenotypes in humans, none of these EDA pathway components map to chromosomes previously shown to modify armor plates in natural populations, though EDAR showed a small but significant effect on plate number. We further investigated whether these genes exhibit differences in copy number, target size, or genomic organization that might make them less suitable targets for evolutionary change. In comparison with EDA, all these genes have smaller surrounding noncoding (putative regulatory) regions, with fewer evolutionarily conserved regions. We suggest that the presence of highly modular cis-acting control sequences may be a key factor influencing the likelihood that particular genes will serve as the basis of major phenotypic changes in nature.  相似文献   

11.
Hypohydrotic Ectodermal Dysplasia (HED) is a genetic disease seen in humans and mice. It is characterized by loss of hair, sweat glands, and teeth. The predominant X-linked form results from mutations in ectodysplasin-A (EDA), a TNF-like ligand. A phenotypically indistinguishable autosomal form of the disease results from mutations in the receptor for EDA (EDAR). EDAR is a NF-kappaB-activating, death domain-containing member of the TNF receptor family. crinkled, a distinct autosomal form of HED, was discovered in a mouse strain in which both the ligand (EDA) and receptor (EDAR) were wild-type, suggestive of a disruption further downstream in the signaling pathway. Employing a forward genetic approach, we have cloned crinkled (CR) and find it to encode a novel death domain-containing adaptor. crinkled binds EDAR through a homotypic death domain interaction and mediates engagement of the NF-kappaB pathway, possibly by recruiting TRAF2 to the receptor-signaling complex. This is an unprecedented example of naturally occurring mutations in ligand, receptor, or adaptor giving rise to the same phenotypic disease characterized by a defect in the proper development of epidermal appendages.  相似文献   

12.
The ubiquitin-editing enzyme A20 (tumor necrosis factor-α-induced protein 3) serves as a critical brake on nuclear factor κB (NF-κB) signaling. In humans, polymorphisms in or near the A20 gene are associated with several inflammatory disorders, including psoriasis. We show here that epidermis-specific A20-knockout mice (A20(EKO)) develop keratinocyte hyperproliferation, but no signs of skin inflammation, such as immune cell infiltration. However, A20(EKO) mice clearly developed ectodermal organ abnormalities, including disheveled hair, longer nails and sebocyte hyperplasia. This phenotype resembles that of mice overexpressing ectodysplasin-A1 (EDA-A1) or the ectodysplasin receptor (EDAR), suggesting that A20 negatively controls EDAR signaling. We found that A20 inhibited EDAR-induced NF-κB signaling independent from its de-ubiquitinating activity. In addition, A20 expression was induced by EDA-A1 in embryonic skin explants, in which its expression was confined to the hair placodes, known to be the site of EDAR expression. In summary, our data indicate that EDAR-induced NF-κB levels are controlled by A20, which functions as a negative feedback regulator, to assure proper skin homeostasis and epidermal appendage development.  相似文献   

13.
Mutations in members of the ectodysplasin (TNF-related) signalling pathway, EDA, EDAR, and EDARADD in mice and humans produce an ectodermal dysplasia phenotype that includes missing teeth and smaller teeth with reduced cusps. Using the keratin 14 promoter to target expression of an activated form of Edar in transgenic mice, we show that expression of this transgene is able to rescue the tooth phenotype in Tabby (Eda) and Sleek (Edar) mutant mice. High levels of expression of the transgene in wild-type mice result in molar teeth with extra cusps, and in some cases supernumerary teeth, the opposite of the mutant phenotype. The level of activation of Edar thus determines cusp number and tooth number during tooth development.  相似文献   

14.
X-linked hypohidrotic ectodermal dysplasia (XLHED), the most common of the ectodermal dysplasias, results in the abnormal development of teeth, hair, and eccrine sweat glands. The gene responsible for this disorder, EDA1, was identified by isolation of a single cDNA that was predicted to encode a 135-amino-acid protein. Mutations in this splice form were detected in <10% of families with XLHED. The subsequent cloning of the murine homologue of the EDA1 gene (Tabby [Ta]) allowed us to identify a second putative isoform of the EDA1 protein (isoform II) in humans. This EDA1 cDNA is predicted to encode a 391-residue protein, of which 256 amino acids are encoded by the new exons. The putative protein is 94% identical to the Ta protein and includes a collagen-like domain with 19 repeats of a Gly-X-Y motif in the presumptive extracellular domain. The genomic structure of the EDA1 gene was established, and the complete sequence of the seven new exons was determined in 18 XLHED-affected males. Putative mutations, including 12 missense, one nonsense, and four deletion mutations, were identified in approximately 95% of the families. The results suggest that EDA1 isoform II plays a critical role in tooth, hair, and sweat gland morphogenesis, whereas the biological significance of isoform I remains unclear. Identification of mutations in nearly all of the XLHED families studied suggests that direct molecular diagnosis of the disorder is feasible. Direct diagnosis will allow carrier detection in families with a single affected male and will assist in distinguishing XLHED from the rarer, clinically indistinguishable, autosomal recessive form of the disorder.  相似文献   

15.
X-linked hypohidrotic ectodermal dysplasia (XHED), an inherited disease recognized in humans, mice, and cattle, is characterized by hypotrichosis, a reduced number or absence of sweat glands, and missing or malformed teeth. In a subset of affected individuals and animals, mutations in the EDA gene (formerly EDI), coding for ectodysplasin, have been found to cause this phenotype. Ectodysplasin is a homotrimeric transmembrane protein with an extracellular TNF-like domain, which has been shown to be involved in the morphogenesis of hair follicles and tooth buds during fetal development. Some human XHED patients also have concurrent immunodeficiency, due to mutations in the NF-κB essential modulator protein (IKBKG; formerly NEMO), which is also encoded on the X chromosome. In a breeding colony of dogs with XHED, immune system defects had been suspected because of frequent pulmonary infections and unexpected deaths resulting from pneumonia. To determine if defects in EDA or IKBKG cause XHED in the dogs, linkage analysis and sequencing experiments were performed. A polymorphic marker near the canine EDA gene showed significant linkage to XHED. The canine EDA gene was sequenced and a nucleotide substitution (G to A) in the splice acceptor site of intron 8 was detected in affected dogs. In the presence of the A residue, a cryptic acceptor site within exon 9 is used, leading to a frame shift and use of a premature stop codon that truncates the translation of both isoforms, EDA-A1 and EDA-A2, resulting in the absence of the TNF-like homology domain, the receptor-binding site of ectodysplasin.The sequence data described in this article have been submitted to GenBank under accession numbers AY924407–AY924414.  相似文献   

16.
X-linked and autosomal forms of anhidrotic ectodermal dysplasia syndromes (HED) are characterized by deficient development of several ectodermal organs, including hair, teeth and exocrine glands. The recent cloning of the genes that underlie these syndromes, ectodysplasin (ED1) and the ectodysplasin A receptor (EDAR), and their identification as a novel TNF ligand-receptor pair suggested a role for TNF signaling in embryonic morphogenesis. In the mouse, the genes of the spontaneous mutations Tabby (Ta) and downless (dl) were identified as homologs of ED1 and EDAR, respectively. To gain insight into the function of this signaling pathway in development of skin and hair follicles, we analyzed the expression and regulation of Eda and Edar in wild type as well as Tabby and Lef1 mutant mouse embryos. We show that Eda and Edar expression is confined to the ectoderm and occurs in a pattern that suggests a role of ectodysplasin/Edar signaling in the interactions between the ectodermal compartments and the formation and function of hair placodes. By using skin explant cultures, we further show that this signaling pathway is intimately associated with interactions between the epithelial and mesenchymal tissues. We also find that Ta mutants lack completely the placodes of the first developing tylotrich hairs, and that they do not show patterned expression of placodal genes, including Bmp4, Lef1, Shh, Ptch and Edar, and the genes for beta-catenin and activin A. Finally, we identified activin as a mesenchymal signal that stimulates Edar expression and WNT as a signal that induces Eda expression, suggesting a hierarchy of distinct signaling pathways in the development of skin and hair follicles. In conclusion, we suggest that Eda and Edar are associated with the onset of ectodermal patterning and that ectodysplasin/edar signaling also regulates the morphogenesis of hair follicles.  相似文献   

17.
We characterized a movement disorder of Chinese Crested dogs clinically and pathologically indistinguishable from canine multiple system degeneration (CMSD) previously recognized in Kerry Blue Terriers. This fatal disease segregated as an autosomal recessive in a 51-dog pedigree of both breeds and their crosses. The occurrence of affected dogs among first-generation crosses demonstrated that the mutations causing multiple system degeneration in these breeds are allelic. The CMSD locus maps to CFA1 (LOD > 18) and haplotype analysis narrowed the CFA1 target region to a 15-Mb segment that contains orthologs of genes on HSA6, including PARK2, the gene for the ubiquitin ligase parkin. Mutations in human PARK2 cause the most common form of familial Parkinson's disease, autosomal recessive juvenile parkinsonism, which has clinical and pathological similarities to canine multiple system degeneration. A second phenotype, canine ectodermal dysplasia (CED), segregated in the pedigree as an autosomal dominant with homozygous lethality. Dogs with ectodermal dysplasia have a sparse hair coat and abnormal dentition that is characteristic of the "hairless" variety of Chinese Cresteds. CED mapped to a region of CFA17 (LOD > 14) containing orthologs from HSA2. EDAR, the gene for the ectodysplasin A1 receptor, occurs on HSA2 but was excluded as the cause of canine ectodermal dysplasia.  相似文献   

18.
Liu Y  Yu X  Wang L  Li C  Archacki S  Huang C  Liu JY  Wang Q  Liu M  Tang Z 《Gene》2012,491(2):246-250
X-linked recessive hypohidrotic ectodermal dysplasia (XLHED) is characterized by the defective morphogenesis of teeth, hair, and eccrine sweat glands. It is associated with mutations in the EDA gene. Up to now, more than 100 mutations in the EDA gene have been reported to cause XLHED. The product of EDA gene is a trimeric type II transmembrane protein that belongs to the tumor necrosis factor (TNF) family of ligands. In this study, we identified a Chinese family with XLHED. Direct DNA sequencing of the whole coding region of EDA revealed a novel missense mutation, p.Leu354Pro in a patient affected with XLHED. This mutation was not found in either unaffected male individuals of the family or 168 normal controls. The substitution of Leu354 with Pro was found to be located in the TNF-like domain of EDA and may influence the epithelial signaling pathway required for the normal ectodermal development through altering the topology of EDA. Our finding broadens the spectrum of EDA mutations and may help to understand the molecular basis of XLHED and aid genetic counseling.  相似文献   

19.
Li S  Li J  Cheng J  Zhou B  Tong X  Dong X  Wang Z  Hu Q  Chen M  Hua ZC 《PloS one》2008,3(6):e2396
Here we report two unrelated Chinese families with congenital missing teeth inherited in an X-linked manner. We mapped the affected locus to chromosome Xp11-Xq21 in one family. In the defined region, both families were found to have novel missense mutations in the ectodysplasin-A (EDA) gene. The mutation of c.947A>G caused the D316G substitution of the EDA protein. The mutation of c.1013C>T found in the other family resulted in the Thr to Met mutation at position 338 of EDA. The EDA gene has been reported responsible for X-linked hypohidrotic ectodermal dysplasia (XLHED) in humans characterized by impaired development of hair, eccrine sweat glands, and teeth. In contrast, all the affected individuals in the two families that we studied here had normal hair and skin. Structural analysis suggests that these two novel mutants may account for the milder phenotype by affecting the stability of EDA trimers. Our results indicate that these novel missense mutations in EDA are associated with the isolated tooth agenesis and provide preliminary explanation for the abnormal clinical phenotype at a molecular structural level.  相似文献   

20.
The ectodermal dysplasia receptor (EDAR) is a recently isolated member of the tumor necrosis factor receptor family that has been shown to play a key role in the process of ectodermal differentiation. We present evidence that EDAR is capable of activating the nuclear factor-kappaB, JNK, and caspase-independent cell death pathways and that these activities are impaired in mutants lacking its death domain or those associated with anhidrotic ectodermal dysplasia and the downless phenotype. Although EDAR possesses a death domain, it did not interact with the death domain-containing adaptor proteins TRADD and FADD. EDAR successfully interacted with various TRAF family members; however, a dominant-negative mutant of TRAF2 was incapable of blocking EDAR-induced nuclear factor-kappaB or JNK activation. Collectively, the above results suggest that EDAR utilizes a novel signal transduction pathway. Finally, ectodysplasin A can physically interact with the extracellular domain of EDAR and thus represents its biological ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号