首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
[目的]确定适合宽叶缬草RAPD分析的DNA提取方法以及建立最佳RAPD反应体系。[方法]比较宽叶缬草基因组DNA的两种提取方法(经典CTAB法、试剂盒法);采用正交设计L16(45),针对Taq DNA聚合酶浓度,d NTP浓度,Mg2+浓度,引物浓度,DNA模板浓度进行RAPD扩增,确立最佳RAPD反应体系。[结果]综合比较,试剂盒法较适合宽叶缬草基因组DNA提取;25μl最适宽叶缬草RAPD反应体系为:2.0 U Taq DNA聚合酶、0.4 mmol/L d NTP、4.0 mmol/L Mg2+、4.0μmol/L随机引物、60 ng模板DNA、2.5μl 10×buffer。[结论]试剂盒DNA提取法和正交优化的反应体系适用于宽叶缬草的RAPD分析,为进一步研究黔产宽叶缬草药材遗传多样性奠定了基础。  相似文献   

2.
目的:建立金发藓科植物ISSR-PCR反应的最佳体系。方法:利用正交设计的方法,对金发藓科植物(Polytrichaceae)IS-SR-PCR反应的5因素(Mg2 ,dNTP,primer,DNA template,Taq DNA polymerase)4水平进行试验。结果:在20μl反应体系中,模板DNA50ng,1.6μmol/L的引物,1×反应缓冲液,3.2mmol/L的Mg2 ,dNTP为1.2mmol/L,2U的TaqDNA聚合酶,反应程序为94℃预变性6min;94℃变性45s,57℃退火45s,72℃延伸2min,循环40次;72℃延伸10min。利用此结论,对20种金发藓科植物进行ISSR-PCR扩增,扩增产物的多态性为69.52%。利用引物841构建的指纹图谱,可区分20种金发藓科植物中的18种,分辨率达90%。金发藓科植物ISSR-PCR反应体系的建立,为今后利用ISSR标记技术开展金发藓科植物种间遗传多样性分析提供一个标准化程序。  相似文献   

3.
刘卓  沙伟  于冰 《生物技术》2012,22(3):61-65
目的:建立紫萼藓科(Grimmiaceae)植物ISSR-PCR反应的最佳体系。方法:通过L16(45)正交试验,研究了dNTP浓度、镁离子浓度、模板DNA浓度、引物浓度、Taq DNA聚合酶浓度这5个因素在4个水平上对ISSR-PCR的影响。结果:建立了紫萼藓科ISSR-PCR反应的最佳反应体系,其中dNTPs浓度为0.8mmol/L、Mg2+浓度为3.0mmol/L、模板为15ng、引物浓度为1.4μmol/L、Taq酶量2U,总体积为25μl。反应程序为:扩增程序为:94℃预变性5min;94℃变性30s,48~52℃退火1min,72℃延伸2min,共40个循环;72℃延伸10min;4℃保存。采用引物UBC812等均能够得到有效扩增。结论:该优化体系的建立为下一步对紫萼藓进行ISSR分子标记奠定了基础。  相似文献   

4.
正交设计优化缩叶藓属植物的ISSR-PCR反应体系   总被引:1,自引:0,他引:1  
沙伟  王助文  曹同 《生物技术》2009,19(5):32-34
目的:建立缩叶藓属(Ptychomitrium)植物ISSR-PCR反应的最佳体系。方法:利用正交设计实验的方法,采用引物562,10号材料Ptychomitrium gardneri为模板对缩叶藓属植物的ISSR-PCR反应体系中的5种主要因素(Mg2+d、NTPs、引物、模板量、Taq酶量)在4个水平上进行体系优化。结果:确定了缩叶藓属(Ptychomitrium)植物ISSR-PCR反应的最佳体系(25μl)为:Mg2+浓度为3.2mmol/L、dNTPs浓度为0.96mmol/L、引物浓度为1.04μmol/L、模板量10ng、Taq酶量1.5U。利用该体系,采用引物564在16个材料中能有效扩增。结论:这一优化体系的建立为以后缩叶藓属植物的ISSR遗传多样性的分析奠定了基础。  相似文献   

5.
丹参ISSR-PCR反应体系的建立与正交优化   总被引:4,自引:0,他引:4  
李嵘  王喆之 《广西植物》2008,28(5):599-603
利用正交试验设计的方法,从引物浓度、Taq DNA聚合酶浓度、Mg2+浓度、dNTP浓度4种因素3个水平,对丹参ISSR-PCR反应体系进行优化分析,并在此基础上对模板DNA浓度、PCR反应过程中的退火温度进行梯度检测。结果表明:20μL ISSR-PCR反应体系中各因素的最佳浓度为1×PCR buffer、200μmol/L dNTP、1.0μmol/L引物、1.5mmol/L Mg2+和1 U Taq DNA聚合酶,最佳模板DNA浓度为20~60ng,引物UBC 835的最佳退火温度为51.7℃。  相似文献   

6.
旨在建立稳定可靠的云生毛茛ISSR-PCR反应体系。采用正交试验设计方法,对影响云生毛茛ISSR-PCR扩增结果的Mg2+、d NTP、Taq DNA聚合酶、引物、模板DNA五个因素进行优化筛选,对反应程序进行优化,建立适用于云生毛茛的最佳反应体系和扩增程序,并对反应体系和扩增程序进行验证;在此基础上筛选多态性好的ISSR引物,采用梯度法筛选各个引物的最适退火温度。结果表明,云生毛茛20μL ISSR-PCR的最佳反应体系为:模板DNA 30 ng,Mg2+1.95 mmol/L,Taq DNA聚合酶0.04U/μL,d NTP 0.150 mmol/L,引物0.5μmol/L;最佳反应程序为:94℃预变性5 min;94℃变性20 s,49.6-60.6℃复性1 min,72℃延伸100 s,38个循环;72℃下延伸6 min。在优化的反应体系和反应程序条件下,从100条ISSR引物中筛选获得16条ISSR扩增引物,并确定了引物各自的最适退火温度。经过不同居群云生毛茛的验证,证明优化后体系扩增条带清晰且重复性好,可用于后续云生毛茛遗传多样性的研究。  相似文献   

7.
目的:获得清晰可靠、重复性较好的ISSR-PCR扩增反应体系,应用于芋种质资源进行遗传多样性的研究中.方法:以芋的幼叶提取基因组DNA为材料,采用正交试验设计L16(45),从模板DNA浓度、引物浓度、Mg2+浓度、dNTPs浓度及TaqDNA聚合酶的用量5因素4水平出发,构建芋最佳反应体系.结果:芋ISSR-PCR的最佳反应体系为:在25μl的反应体系中,40ng DNA模板、0.4μmol/L引物浓度、2.5 mmol/L Mg2+、0.2 mmol/L dNTPs、1 U Taq DNA聚合酶.结论:利用芋种质资源对最佳反应体系的验证,结果显示该反应体系具有扩增稳定性.  相似文献   

8.
以散斑壳属 (Lophodermium) T29、T50、T62、R111菌株为研究材料,对该属ISSR-PCR反应体系中的模板DNA浓度、引物浓度、Mg2 浓度、dNTPs浓度、Taq DNA聚合酶浓度以及退火温度等条件进行优化,寻找出适合此类真菌ISSR-PCR反应的最佳反应体系为15 μL反应体系中,模板DNA浓度为 4~8 ng/μL、引物浓度 0.4~0.5 μmol/L、Mg2 浓度 2.0~2.5 mmol/L、dNTPs浓度 0.15~0.30 mmol/L、Taq DNA聚合酶量1.5~2.5 U,退火温度为 52 ℃.  相似文献   

9.
利用正交试验设计研究Taq DNA聚合酶、DNA模板、引物(UBC 886)、dNTP、Mg2+浓度5个因素对云南八角ISSR-PCR反应的影响,建立其最佳反应体系。结果表明:25μL的反应体系中5个因子的最佳水平为:Mg2+3 mmol/L、Taq DNA聚合酶0.5 U、DNA模板0.016 ng、引物0.8μmol/L、dNTPs 0.2 mmol/L。PCR最佳反应程序为:94℃预变性5 min;94℃变性30 s,46℃退火45 s,72℃延伸1 min,40次循环;72℃最后延伸7 min,4℃保存。  相似文献   

10.
毛薯ISSR-PCR反应体系的建立   总被引:1,自引:0,他引:1  
本研究主要建立毛薯ISSR-PCR的最佳反应体系。研究采用改良CTAB法提取毛薯总基因组DNA,应用单因子实验法设定模板DNA,Mg2+浓度,dNTP浓度,Tap酶浓度以及退火温度的5个不同梯度,探讨单因素变化对毛薯ISSR-PCR扩增的影响。实验结果表明,毛薯ISSR-PCR最佳反应体系为:总体积20μL,模板DNA为50ng、Taq酶为0.8U、Mg2+浓度为2.0mmol/L、引物浓度为0.5μmol/L、dNTPs浓度为0.5mmol/L。  相似文献   

11.
节瓜ISSR-PCR反应体系的建立与正交优化   总被引:1,自引:0,他引:1  
旨在开展节瓜种质资源分类鉴定与遗传多样性研究。通过正交试验设计与单因素分析相结合的方法,对节瓜ISSR-PCR反应体系5个因素(模板DNA浓度、dNTP浓度、Mg2+浓度、引物浓度与Taq聚合酶浓度)在4个水平上进行优化分析,建立了节瓜稳定可靠且具丰富多态性的最佳反应体系,进而对引物退火温度进行梯度试验分析。结果表明,20μL节瓜ISSRPCR最佳反应体系为70 ng模板DNA、0.2 mmol/L dNTP、1.2 mmol/L Mg2+浓度、0.96μmol/L引物、0.8 U Taq DNA聚合酶和2.0μL10×buffer;引物IS807最佳退火温度为53℃。以此为基础,利用4条引物对4份节瓜种质进行最佳反应体系稳定性验证,证明该体系稳定可靠、扩增谱带清晰、多态性丰富且重复性较好。  相似文献   

12.
为建立马铃薯最佳的SRAP-PCR反应体系,以马铃薯基因组DNA为模板,采用单因素和正交试验相结合的方法,对影响SRAP-PCR反应体系的5个因素(引物浓度、Mg2+浓度、模板DNA用量、d NTPs浓度和Taq DNA聚合酶用量)进行优化,建立马铃薯优化的SRAP-PCR反应体系。结果表明:马铃薯SRAP-PCR最佳反应体系中模板DNA用量为60 ng,Mg2+浓度为1.5 mmol/L,d NTPs浓度为0.25 mmol/L,引物浓度为0.60μmol/L,Taq DNA聚合酶用量为0.75 U。各因素对扩增结果影响依次是:Mg2+浓度Taq DNA聚合酶用量模板DNA用量引物浓度d NTPs浓度。用6份马铃薯样品DNA对优化体系进行验证,扩增结果清晰稳定,可用于马铃薯遗传多样性分析和遗传图谱构建等研究。  相似文献   

13.
益智ISSR-PCR反应体系建立与优化   总被引:7,自引:1,他引:6  
目的:获得适合的益智ISSR-PCR扩增反应体系。方法:利用正交设计L46(4^5)和单因素试验对益智ISSR-PCR反应体系的5因素(Taq酶,Mg^2+,模板DNA.dNTPs,引物)在4个水平上进行优化试验,将二者所得结果进行综合比较分析。结果:最终扶得益智ISSR-PCR反应的最优体系(20μl)为:模板DNA 100ng,Mg^2+ 3.0mmol/L,引物0.8μmol/L,dNTPs0.25mmol/L,Taq DNA聚合酶1.0U。最后,对益智ISSR-PCR最佳反应体系进行梯度退火,得到最佳退火温度为50℃。结论:这一优化系统的建立为今后利用ISSR标记技术研究分析益智遗传多样性奠定基础。  相似文献   

14.
目的:为了对银杏进行分子鉴定和遗传关系的分析,建立银杏ISSR-PCR的最佳扩增反应体系。方法:采用正交设计和单因素梯度实验,对影响ISSR-PCR反应体系的5个主要因素(Mg2+、dNTP、引物、模板DNA及Taq DNA聚合酶)进行筛选及优化。结果:银杏25μL ISSR最佳扩增反应体系包含10×Taq反应缓冲液、2.5 mmol/L MgCl2、0.45 mmol/L dNTP、1.2μmol/L引物(UBC861)、10 ng模板DNA及0.9 U Taq DNA聚合酶,使用此ISSR扩增反应体系,获得了10株不同性别银杏DNA的清晰条带,验证了该体系的稳定性。结论:优化的反应体系为采用ISSR分子标记技术对银杏进行遗传多样性分析、遗传育种和转基因等研究奠定了一定的理论基础。  相似文献   

15.
张培培  梁晨 《菌物研究》2010,8(2):107-114
以番茄叶霉病菌(Passalora fulva)基因组DNA为模板,采用单因素试验和正交设计试验对该菌ISSR-PCR体系中的一些重要参数(Mg2+、dNTPs、引物、模板DNA、TaqDNA聚合酶、缓冲液、循环次数)和引物进行筛选和优化,并对退火温度进行了梯度优化,建立了番茄叶霉病菌ISSR-PCR的最佳反应体系(20μL):Mg2+1.5 mmol/L,dNTPs 0.4 mmol/L,引物1.5μmol/L,模板DNA45 ng,TaqDNA聚合酶1.0 U,1倍的PCR缓冲液,循环40次,退火温度50℃。  相似文献   

16.
以云南个旧黑籽南瓜叶片基因组DNA为模板,固定反应程序,采用L_(16)(4~5)正交试验设计的方法,对影响ISSR-PCR反应的五因素(dNTPs,Mg~(2+),引物,Taq DNA聚合酶,模板DNA)在四个水平上进行优化试验。研究建立起了适于云南黑籽南瓜ISSR-PCR的最佳反应体系:25μl反应体系中含10×buffer 2.5μl、0.15mmol/L dNTPs、2.5mmol/L Mg2+、0.40μmol/L引物、1.5U Taq DNA聚合酶、DNA模板15ng。扩增程序为:95℃预变性5min,94℃变性45s,52℃退火45s,72℃延伸90s,进行35个循环,最后72℃延伸7min。该优化体系的建立为今后用ISSR标记技术进行黑籽南瓜种质资源的分类鉴定和遗传多样性研究奠定了基础。  相似文献   

17.
旨在建立绿竹ISSR-PCR最佳反应体系和扩增程序,并筛选适于绿竹ISSR-PCR分析的高多态性引物。以绿竹基因组DNA为ISSR-PCR扩增模板,采用正交试验方法,对d NTPs浓度、Mg2+浓度、Taq DNA聚合酶浓度、引物浓度、模板DNA用量设计5因素4水平试验,采用极差分析法和方差分析法对试验结果进行分析。并对退火温度和循环次数进行筛选,建立绿竹ISSR-PCR最佳反应体系和扩增程序。并利用优化后的体系对100条ISSR引物进行筛选。最终确定的最佳反应体系为:20μL的扩增体系中,d NTPs浓度为0.2 mmol/L,Mg~(2+)浓度为2.0 mmol/L,Taq DNA聚合酶浓度为1.5 U,引物浓度为0.4μmol/L,DNA浓度为60 ng,10×PCR Buffer体积为2μL、剩下用灭菌ddH_2O补全。各因素影响大小依次是:Mg~(2+)d NTPs模板DNATaq DNA聚合酶引物。扩增程序为:94℃预变性5 min;94℃变性45 s,(根据引物的退火温度)复性30 s,72℃延伸90 s,循环38次,72℃延伸10 min,4℃保存。以此体系为基础进行引物筛选,在100条ISSR引物中筛选出14条扩增条带清晰、多态性较高、重复性好的引物。  相似文献   

18.
采用单因子试验和正交设计2种方法对影响花椒ISSR-PCR反应体系的4个因素(TaqDNA聚合酶、Mg2+、dNTP、引物)在3个水平上进行优化试验。选用L9(34)正交设计方案,从电泳结果中直观获得影响因素的最佳组合。单因子试验分别研究各影响因素不同含量对ISSR-PCR反应的影响情况,找出最佳反应水平。结果表明,适宜花椒ISSR-PCR反应的最佳体系为:20μL的反应体系中,Taq酶1.0U,Mg2+2.0 mmol/L,dNTP 0.2mmol/L,引物1.0μmol/L,10×PCR buffer2.5μL,50 ng模板DNA,53℃退火,35个循环。  相似文献   

19.
岩白菜ISSR-PCR反应体系的优化   总被引:2,自引:0,他引:2  
目的:优化岩白菜ISSR-PCR反应体系,为利用ISSR标记进行岩白菜遗传多样性研究服务。方法:采用5因子4水平正交设计法优化岩白菜ISSR-PCR反应体系。结果:五个因子从大到小的影响力排序结果为:dNTPs>Mg2+>模板DNA>引物=Taq酶。岩白菜ISSR-PCR最佳反应体系为:总体积25μL,内含10×PCR缓冲液2.5μL、2.5 mmol.L-1Mg2+、2.0 U Taq酶、0.2 mmol.L-1dNTPs、0.48μmol.L-1ISSR引物、125 ng模板DNA。结论:研究获得的最佳反应体系具有标记位点清晰、反应系统稳定、检测多态性能力强、重复性好等特点,为利用ISSR标记技术研究岩白菜遗传多样性奠定了基础。  相似文献   

20.
目的:建立适合新疆贝母属植物总DNA的ISSR-PCR优化反应体系,为新疆贝母属8种药用贝母品种鉴定和遗传多样性研究提供依据。方法:综合利用单因素实验和L16(45)正交试验,对因素Taq DNA聚合酶、d NTPs、Mg2+、引物浓度、模板DNA含量进行优化,并考察循环次数、延长时间及退火温度。结果:每个因素的不同水平对PCR反应有显著影响,其中Mg2+影响最大。新疆贝母属植物总DNA的ISSR-PCR最适体系为50μL:5μL 10×Buffer、2.5 mmol/L Mg2+、0.30 mmol/L d NTPs、0.8μmol/L引物、0.75 U Taq酶、1.0 ng/μL模板DNA、33.35μL dd H2O。循环次数为45 cycle,延伸时间10 min,引物UBC853的最适退火温度为49.8℃。结论:建立的新疆贝母属植物总DNA的ISSR-PCR反应体系经23份新疆贝母属8种药用贝母样品检验,ISSR-PCR扩增效果显著,证明该体系具有较高的稳定性和可重现性,为新疆贝母属8种药用贝母遗传多样性的分子标记研究奠定基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号