首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
制备高效大肠杆菌电转化感受态细胞和电转化条件的研究   总被引:2,自引:0,他引:2  
旨在建立一种高效大肠杆菌电转化感受态细胞的制备方法,研究了摇瓶装液量,菌体生长阶段,转化电场强度,转化后复苏时间以及感受态细胞存放时间等对转化效率的影响.结果表明,基液量为400 mL/2L,菌体在OD600值为0.452时收集所制备的感受态细胞,在电场强度12.5 kV/cm条件下电击5 ms,转化后复苏时间2h,转化效率可达到1010CFU/μg DNA.此条件下制备的感受态细胞转化效率高,质量稳定,重复性好.  相似文献   

2.
大肠杆菌JM109感受态形成因素分析   总被引:1,自引:0,他引:1  
目的:分析大肠杆菌JM109感受态形成因素,提高转化效率。方法:采用不同生长状态、不同转化溶液、不同保存时间及热激处理时间的细菌制备感受态,分析转化效率。结果:以20mmol/L MgCl2 80mmol/L CaCl2为处理液,经活化培养OD600为0.82的菌液制备感受态细胞,4℃放置12~24h之内,42℃热激处理60s,转化效率最高,可达9.8×106~1.2×107cfu/μg DNA(pUC19)。随着质粒长度增加,转化效率下降。结论:感受态细胞形成与生长状态关系密切,金属离子、有机溶剂对感受态的形成影响显著。感受态形成过程中,细胞可能发生了一系列的生理变化。  相似文献   

3.
Silwet L-77是一种非离子型的表面活性剂,常用于植物的转化。本研究发现,Silwet L-77的加入也可以显著地提高大肠杆菌的转化效率。同时,我们比较了不同培养温度、不同培养浓度(OD_(600)值)及不同冷冻保护剂对感受态细胞转化效率的影响。我们发现,28℃培养E.coli至OD_(600)值为0.55~0.6之间时制备感受态细胞,利用9%的DMSO做为冷冻保护剂冷冻保存感受态细胞,转化时加入0.001 5%~0.002%的Silwet L-77,可以获得最高的转化效率。总之,该研究进一步优化了大肠杆菌感受态细胞的制备及转化方法。  相似文献   

4.
感受态细胞制备与保存方法的比较研究   总被引:17,自引:2,他引:15  
目的 :确立一个能制备高转化率感受态细胞并长期维持其感受性的实验方案。方法 :比较CaCl2 法、TSS法、超高效法制备感受态细胞的效果 ,选用三者中较好的方法进一步探讨不同生长期 (OD值 0 .2~ 1.1)的细菌对制备感受态细胞的影响 ,并分别比较了不同冷冻保护剂 (7%DMSO ,10 %甘油 )于 - 2 0℃、- 80℃冰箱保存感受态细胞的效果。结果 :三种方法获得的感受态细胞转化率差异极显著 (P <0 .0 1)。采用超高效法 ,OD值为 0 .36 (或 0 .5 8)时收集菌体可获得 1.1× 10 8的高转化率的感受态细胞 ,以 7%的DMSO为冷冻保护剂保存感受态细胞可维持 10 7以上的转化率 4 0d以上  相似文献   

5.
大肠杆菌感受态细胞转化能力的影响因素   总被引:12,自引:0,他引:12  
探讨了大肠杆菌菌株、细菌生长状态、转化溶液、抗冻剂及保存时间、质粒长度和纯度对感受态细胞转化能力的影响。结果表明,以100 mmol/L CaCl2为缓冲液,采用经活化培养的A600为0.55的TG1制备的感受态细胞,在冰上放置6h后转化,所得转化率最高,可达2×106-4×107cfu/μg DNA(pUC19)。随着质粒长度增加和纯度降低,转化率有所下降。若感受态细胞要保存备用,以15%甘油为抗冻剂优于7%DMSO,但添加抗冻剂对转化率有抑制作用。贮于甘油的感受态细胞在-70℃冻存两个月后仍有较理想的转化率。  相似文献   

6.
大肠埃希菌DH5α感受态细胞转化率变化的研究   总被引:1,自引:0,他引:1  
针对本实验室保藏的E.coli DH5α,对该菌株在不同生长时期的转化效率变化情况进行测定,确立了一个能制备高转化率感受态细胞的实验方案。结果表明:在细菌的生长繁殖过程中,其转化率有很大变化;得到了E.coil DH5α菌株制备感受态细胞的最佳条件。  相似文献   

7.
大肠杆菌最佳感受态细胞制备的探讨   总被引:9,自引:0,他引:9  
本文对4种大肠杆菌菌株在不同生长时期的转化效率分别进行了测定.结果表明,在细菌的生长繁殖过程中,其转化效率是有很大变化的.对于不同的菌株,它们获得高转化率时的活菌数不同.同时,得到了这4种大肠杆菌菌株制备最佳感受态细胞的条件.  相似文献   

8.
循环利用重组大肠杆菌细胞转化合成丁二酸   总被引:1,自引:0,他引:1  
研究了回收丁二酸发酵液中的大肠杆菌进行细胞转化的可行性,以转化率和生产效率为指标,考察了不同菌体浓度、底物浓度、pH调节剂对细胞转化的影响。发酵结果表明大肠杆菌可以在仅含有葡萄糖和pH调节剂的水环境中转化生产丁二酸,并确定了最佳的转化条件为:细胞浓度(OD600)50,底物浓度40g/L,缓冲盐为MgCO3。基于优化好的条件,在7L发酵罐中进行重复批次转化,第1次转化的转化率和生产效率分别达到91%和3.22g/(L·h),第2次转化的生产效率和转化率达到了86%和2.04g/(L·h),第3次转化的转化率和生产效率分别达到了83%和1.82g/(L·h)。  相似文献   

9.
通过氯化钙法制备大肠杆菌DH5α菌株感受态,讨论了不同保存温度和保存时间对感受态转化率的影响。结果表明,在4℃下保存,8h达到最高转化率;在-20℃和-70℃下保存,均为48h达到最高转化率。通过氯化钙法制备的DH5α菌株感受态细胞,在-20℃条件下简单保存,20d内完全可以满足一般转化研究的要求,不需要复杂的甘油、液氮处理及超低温要求。  相似文献   

10.
电转化条件对大肠杆菌XL1-Blue菌株转化效率的影响   总被引:10,自引:0,他引:10  
探讨XL1-Blue菌株电转化的最优条件。通过改变电压、质粒DNA浓度、细菌生长周期等影响电转化的重要条件,做出转化率的变化曲线,从中探索电转化的最优条件。实验结果得出在电容25μF、电阻200 Ω、电压2.5 kV、D600nm为0.3~0.4、0.2 cm电转化杯、DNA终浓度0.1μg/ml、感受态细胞终浓度2.5×1012、氨苄青霉素浓度50μg/ml的条件下,电转化效率最高,可达到7.64×108。电转化实验转化效率高,重复性好,为成功的建立抗体库提供了保证。  相似文献   

11.
以自行筛选的恶臭假单胞菌(Pseudomonas putida)(命名为Rs198,Genbank登录号为FJ788425)为受体菌,将具有卡那霉素抗性标记的大肠杆菌假单胞菌穿梭质粒PDSK519通过电转化法导入到受体菌中,对细胞生长状态、电转化温度、质粒DNA及感受态细胞浓度、电击电压及电转化介质给予转化效率的影响进行研究。结果表明,在细胞生长至OD600为0.5左右时收集菌体,在低温条件下制备浓度为 4.6×1012/ml 的感受态细胞,以0.3mol/L的蔗糖为电转化介质,在13kV/cm的场强下电击能获得较高的转化效率,最高可达1.3×107个转化子/μ g DNA。为构建恶臭假单胞的遗传转化系统,利用基因工程手段为该菌的进一步研究奠定了理论基础。  相似文献   

12.
Propionibacterium acnes has been known to be involved in the pathology of acne. However, the definite mechanism in the development of acne and the inflammation are unknown. For P. acnes, a transformation method has not been established, although it is believed to be a basic tool for gene manipulation. This study attempted to develop a P. acnes transformation method by using electroporation. Various parameters were used to develop and optimize the transformation of P. acnes. Among them two factors were crucial in the transformation for P. acnes: one was the E. coli strain from which the plasmid DNA had been isolated and the other the growth temperature of P. acnes-competent cells. It was essential to prepare plasmid DNA from a dam(-) E. coli strain, ET12567. When plasmid DNAs isolated from the other E. coli strains such as JM109 and HB101 were tested, transformation efficiency was extremely low. When P. acnes cells were cultivated at 24 degrees C for competent cell preparation, transformation efficiency increased considerably. When plasmid DNA isolated from a dam(-) mutant strain of E. coli was used for transformation of P. acnes which had been grown at 24 degrees C, maximum transformation efficiency of 1.5 x 10(4) transformants per mug of plasmid DNA was obtained at a field strength of 15 kV/cm with a pulse time of 3.2 ms. This is believed to be the first report on the transformation of P. acnes which can be employed for gene manipulations including knock-out of specific genes.  相似文献   

13.
The level of plasmid transformation and transfection by the high molecular mass DNA was studied for Escherichia coli mutants having increased efficiency of plasmid transformation by low molecular mass DNA. Decreased level of plasmid transformation and transfection registered in some mutants as compared to the one in wild type strain suggests the specificity of Escherichia coli cells penetration for DNA of different molecular mass.  相似文献   

14.
We studied the transforming ability of the extracellular plasmid DNA released from a genetically engineered Escherichia coli pEGFP and the culturing conditions for the release of transforming DNA. The transforming ability was evaluated by transformation of competent cells with filtrates of E. coli pEGFP cultures. The number of transformants increased with time when E. coli pEGFP cells grew exponentially in rich medium, but not in stationary phase or when inoculated in freshwater. These results suggested that crude extracellular plasmid DNA had transforming ability and this transforming DNA was mainly released by actively growing bacteria.  相似文献   

15.
The exposure of plasmid pUC18 and pBR322 DNA to high hydrostatic pressure increased the ability of plasmids to transform competent Escherichia coli cells. For pUC18 plasmid, a pressure of 400 MPa, and for pBR322, a pressure of 200 MPa was found to provide the highest transformation efficiency. The DNA duplexes of the two plasmids were found to be the most stable for melting conditions at these pressures. At pressures higher than these, both the stability of the duplex DNA and the transformation efficiency were affected. The stabilizing effect of high hydrostatic pressure on the hydrogen bond may be responsible for the observed increase in transformation efficiency of the pressure-exposed plasmid DNA. The possibility of pressure-induced changes in the structure and conformation of DNA was studied using various techniques. In agarose gel electrophoresis, pressure-treated plasmids (pUC18 at 400 MPa and pBR322 at 200 MPa) consistently showed visibly distinct higher mobility compared to untreated plasmids. Pressure-treated pUC18 as well as pBR322 DNA showed significant reduction in ethidium bromide binding as is evident from the reduced intensity of fluorescence of the dye bound pressure-treated DNA. Spectroscopic studies using circular dichroism and Fourier transform infrared (FTIR) spectroscopy also showed significant differences in the absorption profiles of pressure-treated plasmids as compared to an untreated control. These studies revealed that the pressure-induced changes in the conformation of these DNAs may be responsible for the observed increase in the transformation ability of the plasmids. On the other hand, the exposure of competent cells of E. coli to a high hydrostatic pressure of 50 MPa not only reduced their colony-forming ability but also drastically reduced their ability to take up plasmid DNA.  相似文献   

16.
Current protocols of recombinant DNA research, including gene cloning and complementation, quantification of gene expression and tagging with reporter proteins, are usually limited by the availability of effective bacteria transformation tools different from Escherichia coli. This is particularly relevant with respect to the Pseudomonas species due to their biotechnological and sanitary importance. Here, we describe an optimized and efficient plasmid transference protocol based on the Yoshida effect, a method that relies on DNA uptake mediated by friction forces. The main advantages of this method are: (i) no competent cell preparation is needed, (ii) cells in any physiological state can be used, (iii) the procedure is performed directly on agar plates and (iv) the protocol, which is neither time-consuming nor labor-intensive, offers good efficiency. This approach promises to become the gold standard for day to day genetic manipulation in Pseudomonas.  相似文献   

17.
The Escherichia coli K12 mutant having the increased efficiency for plasmid DNA transformation has been shown to possess the different protein composition of the outer membrane of the cellular wall, as compared with that of the wild type strain. Correlation between the level of calcium-dependent plasmid transformation and the portion of infections DNA bound with cytoplasmic membranes is demonstrated for the Escherichia coli cells mutant for outer membrane structure and ability to be transformed by plasmid DNA.  相似文献   

18.
A simple and rapid method for the transfer of plasmids between the Gram-positive species Lactococcus lactis and Escherichia coli without the need for plasmid preparation is described. The donor strain was subjected to an electroporation pulse which released plasmid DNA into the suspending buffer which was then centrifuged to remove cells and debris. The supernatant was mixed with the recipient strain and subjected to a second electroportion pulse, resulting in the transfer of plasmid from donor to recipient. In cases where a high transformation efficiency is not required, such as the transfer of a cloned construct from E. coli to Lactococcus or vice versa , this method has the advantages of convenience and rapidity.  相似文献   

19.
We have determined and compared nucleotide excision repair capability of several rat tissues by a method based on restoration of the transformation activity of UV-irradiated pBlueScript by incubation in repair-competent protein extracts. After 3 h of incubation, plasmid DNA was isolated and used to transform competent Escherichia coli cells. Damaged plasmids showed low transformation efficiency prior to incubation in repair-competent extracts. After incubation the transformation efficiency was restored to different extents permitting calculation of the repair capacity of the extracts. Our results showed that rapidly proliferating tissues such as liver, kidney and testis showed higher nucleotide excision repair capacity than slowly proliferating tissues such as heart, muscle, lung and spleen. When liver and splenocytes were stimulated to proliferation by partial hepatectomy and mitogen stimulation, their repair capability increased in parallel with the respective proliferative rates.  相似文献   

20.
Short treatment of Escherichia coli cells with antibiotics disturbing synthesis of bacterial cell wall in small concentrations renders the cells capable of absorbing foreign plasmid DNA. A novel express-method for transformation of E. coli cells by plasmid DNA has been developed on the basis of the results obtained. The whole procedure can be performed at room temperature. Depending on cell strain and the plasmid size, the efficiency of transformation can vary from 1.10(4) to 5.10(5) transformants per 1 mkg of DNA. The method suggested improves significantly the every-day work aimed at constructing plasmids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号