首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
ABSTRACT: BACKGROUND: Industrial production of biofuels and other products by cellulolytic microorganisms is of interest but hindered by the nascent state of genetic tools. Although a genetic system for Clostridium thermocellum DSM1313 has recently been developed, available methods achieve relatively low efficiency and similar plasmids can transform C. thermocellum at dramatically different efficiencies. RESULTS: We report an increase in transformation efficiency of C. thermocellum for a variety of plasmids by using DNA that has been methylated by Escherichia coli Dam but not Dcm methylases. When isolated from a dam+ dcm+ E. coli strain, pAMG206 transforms C. thermocellum 100-fold better than the similar plasmid pAMG205, which contains an additional Dcm methylation site in the pyrF gene. Upon removal of Dcm methylation, transformation with pAMG206 showed a four- to seven-fold increase in efficiency; however, transformation efficiency of pAMG205 increased 500-fold. Removal of the Dcm methylation site from the pAM205 pyrF gene via silent mutation resulted in increased transformation efficiencies equivalent to that of pAMG206. Upon proper methylation, transformation efficiency of plasmids bearing the pMK3 and pB6A origins of replication increased ca. three orders of magnitude. CONCLUSION: E. coli Dcm methylation decreases transformation efficiency in C. thermocellum DSM1313. The use of properly methylated plasmid DNA should facilitate genetic manipulation of this industrially relevant bacterium.  相似文献   

2.
A 3.6-kb endogenous plasmid was isolated from a Propionibacterium freudenreichii strain and sequenced completely. Based on homologies with plasmids from other bacteria, notably a plasmid from Mycobacterium, a region harboring putative replicative functions was defined. Outside this region two restriction enzyme recognition sites were used for insertion of an Escherichia coli-specific replicon and an erythromycin resistance gene for selection in Propionibacterium. Hybrid vectors obtained in this way replicated in both E. coli and P. freudenreichii. Whereas electroporation of P. freudenreichii with vector DNA isolated from an E. coli transformant yielded 10 to 30 colonies per microg of DNA, use of vector DNA reisolated from a Propionibacterium transformant dramatically increased the efficiency of transformation (> or =10(8) colonies per microg of DNA). It could be shown that restriction-modification was responsible for this effect. The high efficiency of the system described here permitted successful transformation of Propionibacterium with DNA ligation mixtures.  相似文献   

3.
Abstract The present work is concerned with plasmid transformation of Streptococcus sanguis strain Challis with derivatives of pDP1/pSMB1, the only plasmid found to occur naturally in Streptococcus pneumoniae . Two recombinant plasmids derived from the cryptic pSMB1 were used: pDP27 (4.5 kb) conferring resistance to chloramphenicol (Cm), and pDP28 (7.8 kb), a shuttle plasmid, conferring resistance to Cm in Escherichia coli , and resistance to erythromycin (Em) in pneumococcus. It could be shown that pSMB1 can replicate in S. sanguis ; in fact, Challis strain V288 was transformed to Cm-resistance and to Em-resistance by pDP27 and pDP28 respectively.
Shuttle plasmid pDP28 can transform S. sanguis both when isolated from pneumococcus and from E. coli , albeit with a different efficiency. The low frequency of transformation observed when pDP28 was isolated from E. coli DH1 ( recA ) was shown to be due to lack of multimeric forms of the plasmid in the DNA preparations obtained from this strain. When pDP28 was isolated from E. coli C600 (RecA+), multimeric forms were present, and transformations of S. sanguis was more efficiency Using pDP28 as vector in cloning experiments, where S. sanguis was the host of the recombinant DNA molecules, treatment of the vector with alkaline phosphatase inhibited the recovery of recombinant clones.  相似文献   

4.
Shuttle vectors for gene transfer between Streptomyces spp. and Escherichia coli have been constructed by fusion of an artificial multicopy E. coli replicon and DNA fragments of pIJ702. Stable transfer to Streptomyces lividans was obtained. Marked differences in transformation efficiency were observed when plasmid DNA isolated from E. coli GM119 was used instead of that from strain HB101.  相似文献   

5.
Streptomyces avermitilis contains a unique restriction system that restricts plasmid DNA containing N6-methyladenine or 5-methylcytosine. Shuttle vectors isolated from Escherichia coli RR1 or plasmids isolated from modification-proficient Streptomyces spp. cannot be directly introduced into S. avermitilis. This restriction barrier can be overcome by first transferring plasmids into Streptomyces lividans or a modification-deficient E. coli strain and then into S. avermitilis. The transformation frequency was reduced greater than 1,000-fold when plasmid DNA was modified by dam or TaqI methylases to contain N6-methyladenine or by AluI, HhaI, HphI methylases to contain 5-methylcytosine. Methyl-specific restriction appears to be common in Streptomyces spp., since either N6-methyladenine-specific or 5-methylcytosine-specific restriction was observed in seven of nine strains tested.  相似文献   

6.
Streptomyces griseus does not readily take up foreign DNA isolated from other Streptomyces species or Escherichia coli, presumably due to its unique restriction-modification systems that function as a barrier for interspecific DNA transfer. To efficiently transform S. griseus by avoiding the restriction barriers, we methylated incoming DNA in vivo and in vitro and treated protoplasts with heat prior to transformation. Whereas heat treatment of protoplasts or methylation of the E. coli-Streptomyces shuttle vectors (pXE4 and pKK1443) did not prominently improve the transformation efficiency, HpaII methylation of the vectors from any E. coli strains tested in this study highly increased the transformation efficiency. The highest transformation efficiency was observed when the shuttle vectors were isolated from the dam, hsd strain of E. coli (GM161) and methylated by AluI and HpaII methyltransferases, and the efficiency was approximately the same as that of the vectors from S. griseus. We identified several restriction-modification systems that decrease the transformation efficiency. This research also led us to understand methylation profiles and restriction-modification systems in S. griseus.  相似文献   

7.
The Pseudonocardiaceae Amycolatopsis sp. strain HR167 is used in a biotransformation process to produce vanillin from ferulic acid. To make this strain accessible for genetic engineering, a direct mycelium transformation system developed for Amycolatopsis mediterranei [Madon and Hotter (1991) J Bacteriol 173: 6325-6331] was applied and optimized for Amycolatopsis sp. strain HR167. The physiological state of the cells had a major influence on the transformation rate. The highest transformation rate of about 7x10(5) transformants per microgram of DNA was obtained with mycelium harvested 6.5-7.5 h after the culture has reached the stationary growth phase. When cells were harvested outside of this time slot, the transformation rate drastically decreased. The density of the mycelium suspensions used in the transformation mixture and the methylation state of the plasmid DNA used for the transformation were also crucial parameters. With plasmid DNA isolated from Escherichia coli ET12567, transformation rates were 3,500-fold higher than those obtained with DNA isolated from E. coli XL1-Blue.  相似文献   

8.
The objective was to study the prevalence and antibiotic susceptibility patterns of Propionibacterium acnes strains isolated from patients with moderate to severe acne in Stockholm, Sweden and to determine the diversity of pulsed-field gel electrophoresis types among resistant P. acnes strains. One hundred antibiotic-treated patients and 30 non-antibiotic-treated patients with moderate to severe acne participated in the investigation. Facial, neck and trunk skin samples were taken with the agar gel technique. The susceptibility of P. acnes strains to tetracycline, erythromycin, clindamycin and trimethoprim-sulfamethoxazole was determined by the agar dilution method. The genomic profiles of the resistant strains were determined by pulsed-field gel electrophoresis. In the group of patients treated with antibiotics, resistant P. acnes strains were recovered in 37%, while in the non-antibiotic group of patients the incidence of resistant strains was 13%. Thus antibiotic-resistant P. acnes strains were significantly more often isolated from antibiotic-treated patients with moderate to severe acne than from non-antibiotic-treated patients (odds ratio, 3.8; P=0.01). There was a genetic diversity among the P. acnes strains. Forty-four different patterns of SpeI DNA digests were detected and two predominant clones were found. P. acnes strains exhibited different antibiotic susceptibility patterns and identical genotypes or vice versa. A person can be colonized with different strains with varying degrees of antibiotic resistance. The risk of increased resistance of P. acnes must be considered when treating acne patients with antibiotics, and especially long-term therapy should be avoided.  相似文献   

9.
P1 plasmid replication requires methylated DNA.   总被引:15,自引:1,他引:14       下载免费PDF全文
Plasmids driven by the plasmid replication origin of bacteriophage P1 cannot be established in Escherichia coli strains that are defective for the DNA adenine methylase (dam). Using a composite plasmid that has two origins, we show that the P1 origin cannot function even in a plasmid that is already established in a dam strain. An in vitro replication system for the P1 origin was developed that uses as a substrate M13 replicative-form DNA containing the minimal P1 origin. The reaction mixture contains a crude extract of E. coli and purified P1 RepA protein. In addition to being RepA dependent, synthesis was shown to be dependent on methylation of the dam methylase-sensitive sites of the substrate DNA. As the P1 origin contains five such sites in a small region known to be critical for origin function, it can be concluded that methylation of these sites is a requirement for initiation. This suggests that the postreplicational methylation of the origin may control reinitiation and contribute to the accuracy of the highly stringent copy-number control of the origin in vivo.  相似文献   

10.
11.
以自行筛选的恶臭假单胞菌(Pseudomonas putida)(命名为Rs198,Genbank登录号为FJ788425)为受体菌,将具有卡那霉素抗性标记的大肠杆菌假单胞菌穿梭质粒PDSK519通过电转化法导入到受体菌中,对细胞生长状态、电转化温度、质粒DNA及感受态细胞浓度、电击电压及电转化介质给予转化效率的影响进行研究。结果表明,在细胞生长至OD600为0.5左右时收集菌体,在低温条件下制备浓度为 4.6×1012/ml 的感受态细胞,以0.3mol/L的蔗糖为电转化介质,在13kV/cm的场强下电击能获得较高的转化效率,最高可达1.3×107个转化子/μ g DNA。为构建恶臭假单胞的遗传转化系统,利用基因工程手段为该菌的进一步研究奠定了理论基础。  相似文献   

12.
We established an efficient transformation method for thermophile Geobacillus kaustophilus HTA426 using conjugative transfer from Escherichia coli of host-mimicking plasmids that imitate DNA methylation of strain HTA426 to circumvent its DNA restriction barriers. Two conjugative plasmids, pSTE33T and pUCG18T, capable of shuttling between E. coli and Geobacillus spp., were constructed. The plasmids were first introduced into E. coli BR408, which expressed one inherent DNA methylase gene (dam) and two heterologous methylase genes from strain HTA426 (GK1380-GK1381 and GK0343-GK0344). The plasmids were then directly transferred from E. coli cells to strain HTA426 by conjugative transfer using pUB307 or pRK2013 as a helper plasmid. pUCG18T was introduced very efficiently (transfer efficiency, 10(-5)-10(-3) recipient(-1)). pSTE33T showed lower efficiency (10(-7)-10(-6) recipient(-1)) but had a high copy number and high segregational stability. Methylase genes in the donor substantially affected the transfer efficiency, demonstrating that the host-mimicking strategy contributes to efficient transformation. The transformation method, along with the two distinguishing plasmids, increases the potential of G. kaustophilus HTA426 as a thermophilic host to be used in various applications and as a model for biological studies of this genus. Our results also demonstrate that conjugative transfer is a promising approach for introducing exogenous DNA into thermophiles.  相似文献   

13.
Short treatment of Escherichia coli cells with antibiotics disturbing synthesis of bacterial cell wall in small concentrations renders the cells capable of absorbing foreign plasmid DNA. A novel express-method for transformation of E. coli cells by plasmid DNA has been developed on the basis of the results obtained. The whole procedure can be performed at room temperature. Depending on cell strain and the plasmid size, the efficiency of transformation can vary from 1.10(4) to 5.10(5) transformants per 1 mkg of DNA. The method suggested improves significantly the every-day work aimed at constructing plasmids.  相似文献   

14.
The ability of the known Escherichia coli strain JC3881 recB recC recF sbc15 to produce oligomeric and multimeric forms of pBR322 underlies the study presented. The individual oligomeric forms of pBR322 were isolated from the agarose gel. The plasmid forms were used for electron microscopic control and also introduced into the system of E. coli competent cells. The E. coli transformation level of different forms of plasmid DNA rose from monomers to pentamers. CCC forms of the plasmid possessed high efficiency of the E. coli cell transformation. The systems of the host recombination are to be significant in the process of plasmid oligomerization.  相似文献   

15.
pKMR-plasmids controlling the antibiotic resistance and adhesive properties were isolated from clinical strains of E. coli O26 and O124, and Sh. sonnei. Two of them, i.e. pKMR 207 and pKMR 208 were conjugative. On conjugation they jointly transferred the features of the antibiotic resistance and capacity for production of the colonization antigen. The studies on transformation of E. coli K 12 802 with the plasmid DNA of E. coli O124 showed that the antibiotic resistance and colonization properties in E. coli O124 were controlled by the nonconjugative plasmid pKMR 209. It was found that plasmids pKMR 207 and pKMR 208 had the fi(-)-phenotype. None of the plasmids allotted the host cells sensitivity to the donor specific phages of the incompatibility groups F, N, P, W, and I. Probably, the plasmids did not belong to these incompatibility groups. When the cells of E. coli K 12 802 were transformed with the plasmid DNA of the wild strain to the hemolytic strain of S. typhimurium with multiple antibiotic resistance, 3 pKMR 210 plasmids with different markers of the antibiotic resistance were detected in the transformants. One of the plasmids controlled both the drug resistance and the capacity for production of hemolysin. The ability of the detected pKMR plasmids to inhibit fertility and relation to the donor specific phages was studied.  相似文献   

16.
The effect of nuclease on transformation efficiency in Serratia marcescens   总被引:1,自引:0,他引:1  
No differences in the efficiency of transformation were observed from both plasmid and chromosomal DNA in Serratia marcescens 2170 and an extracellular nuclease defective isogenic strain. The efficiency of transformation was the same for Escherichia coli 5K and E. coli containing a recombinant plasmid conferring the ability to synthesize a S. marcescens nuclease. From these results we conclude that the extracellular nuclease of S. marcescens 2170 is not the main cause of the low efficiency of transformation observed in this bacterium.  相似文献   

17.
The standard method of transformation of Escherichea coli with plasmid DNA involves two important steps: cells are first suspended in 100mM CaCl(2) at 0 degrees C (in which DNA is added), followed by the administration of a heat-pulse from 0 to 42 degrees C for 90s [Cohen, S., Chang, A., Hsu, L., 1972. Nonchromosomal antibiotic resistance in bacteria. Proc. Natl. Acad. Sci. U.S.A., 69, 2110-2114]. The first step makes the cells competent for uptake of DNA and the second step is believed to facilitate the DNA entry into the cells by an unknown mechanism. In this study, the measure of membrane potential of the intact competent cells, at different steps of transformation process, either by the method of spectrofluorimetry or that of flow cytometry, indicates that the heat-pulse step (0-->42 degrees C) heavily decreases the membrane potential. A subsequent cold shock (42-->0 degrees C) raises the potential further to its original value. Moreover, the efficiency of transformation of E. coli XL1 Blue cells with plasmid pUC19 DNA remains unaltered when the heat-pulse step is replaced by the incubation of the DNA-adsorbed competent cells with 10 microM carbonyl cyanide m-chlorophenyl hydrazone (CCCP) for 90s at 0 degrees C. Since the CCCP, a well-known protonophore, reduces membrane potential by dissipating the proton-motive-force (PMF) across E. coli plasma membrane, our experimental results suggest that the heat-pulse step of the standard transformation procedure facilitates DNA entry into the cells by lowering the membrane potential.  相似文献   

18.
A 5,500-base-pair BglII-EcoRI fragment proximal to the hsd genes of Escherichia coli K-12 has been cloned in the plasmid vector pUC9. The resultant hybrid plasmid was shown to complement the mcrB mutation of E. coli K802. The presence of the hybrid plasmid in strain K802 caused an 18.3-fold drop in transformation efficiency with AluI-methylated pACYC184 relative to unmethylated pACYC184. These results indicate that the cloned DNA is involved in the McrB system restriction of 5-methylcytosine DNA.  相似文献   

19.
Large monolamellar liposomes were constructed from the total E. coli lipid by ultrasonication and consecutive treatment with Ca2+ and EDTA. Serum albumin and plasmid DNA were incorporated into the liposomes with the efficiency of 6.3 and 4.7%, respectively. The plasmid DNA remained intact after incorporation, as was demonstrated by gel electrophoresis and transformation of E. coli with the DNA extracted from the liposomes, About one half of DNA-containing liposomes remained undamaged after 10 hr incubation at 4 degrees C. Possible implications of E. coli lipid liposomes in genetic transformation are discussed.  相似文献   

20.
M V Norgard  K Keem  J J Monahan 《Gene》1978,3(4):279-292
The susceptibility of E. coli strain chi1776 to transformation by pBR322 plasmid DNA was examined and optimized. Maximum transformation to tetracycline (Tc) resistance was achieved when cells were harvested from L broth at 5.0--6.0 . 10(7) cfu/ml, followed by washing twice in cold 0.1 M NaCl + 5 mM MgCl2 + 5 mM Tris, pH 7.6. Cells grown in the presence of D-cycloserine (Cyc) rather than nalidixic acid (Nx) transformed markedly better. The presence of 5 mM Mg2+ ions in washing and CaCl2 solutions stimulated transformation about 2-fold. Optimal conditions for transformation included a pH range of 7.25-7.75 and a cell-to-DNA ratio of about 1.6 . 10(8) cfu/ng plasmid DNA. The frequency of transformation was highest when cells were exposed to 100 mM CaCl2 in 250 mM KCl + 5 mM MgCl2 + 5 mM Tris, pH 7.6, before mixing with DNA. A 60 min incubation period for cell + DNA mixtures held on ice produced the maximum number of Tcr transformants. In our hands, heat shocks at 37 degrees C or 42 degrees C for various times all decreased transformation to about one-half of optimal levels. Furthermore, the recovery of transformants was best when cell + DNA mixtures were plated on precooled (4 degrees C) Tc agar plates. The efficiency of plating was optimum when only 5 microliter of cell + DNA mixture was spread per plate, suggesting that non-viable background chi1776 cells on selective medium inhibited the recovery of transformants. It was also found that the presence of linear DNA molecules in cell + DNA mixtures markedly inhibited the transformation of chi1776 by pBR322 plasmid DNA. On the basis of these findings, a new procedure for the plasmid-specific transformation of E. coli chi1776 by pBR322 plasmid DNA is proposed. The use of this technique has allowed us to attain transformation frequencies in excess of 10(7) transformants/microgram pBR322 plasmid DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号