首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
付玲 《生物物理学报》2007,23(4):314-322
大脑功能的成像检测在认知神经科学领域具有极其重要的意义。现代光子学技术的发展为认知脑成像提供了新的研究手段,在神经系统信息处理机制研究中发挥重要作用。文章介绍了在神经元、神经元网络、特定脑皮层功能构筑以及系统与行为等不同层次开展神经系统信息处理机制研究的各种光学成像技术,包括多光子激发荧光显微成像、内源信号光学成像、激光散斑成像和近红外光学成像等,并评述了这些有特色的光学成像技术在多层次获取和分析神经信息中的研究进展。  相似文献   

2.
随着对神经机制问题阐述水平的迅速提高,所应用的神经成像技术、方法及各种工具的复杂程度也在不断提高.一方面是神经成像技术本身的不断发展,另一方面则是大脑直接刺激与神经成像技术同步记录方法的发展.经颅磁刺激-功能磁共振成像同步技术(TMS-fMRI)和经颅磁刺激-脑电技术(TMS-EEG)能为研究大脑网络的功能和有效连通性提供技术手段,该技术在多种认知领域的发展和应用,为神经科学、认知心理学、神经信息学等学科的研究者对人脑的研究开启了多条通道,更加有利于深入地理解人类大脑的工作机制.  相似文献   

3.
认知神经科学促进了心理学领域有关视频暴力与攻击行为的神经生理机制研究.近几年,国外研究者使用功能性磁共振成像研究了视频暴力与攻击行为的神经生理机制,并提出了新的攻击行为模型:神经发展模型.研究发现:长时间暴露在视频暴力下人类对暴力的威胁的脑反应是真实的并且可以察觉到的;能导致前额皮层、杏仁核、前扣带皮层、海马和海马回的激活;能增加潜在的攻击行为.文章介绍了认知神经科学领域中视频暴力和攻击行为神经成像研究的发展现状并展望了其前景.  相似文献   

4.
目的:采用功能磁共振成像(functional MRI,fMRI)方法考察汉语Slroop任务大脑激活模式.方法:对8例正常汉族人进行了汉语Stroop色词任务实验测试,同时采用Siemens Sonata 1.5 T成像系统,采集其脑部的BOLD-fMRI数据,通过AFNI软件进行统计分析得到脑功能活动的图像,分析不同脑区的激活模式.结果:汉语Slroop任务主要激活双侧额中回、额下回、前扣带回和顶后区,双侧额上回、中央前回、基底节区和颞叶也有不同程度激活.结论:汉语Stroop任务有固定的大脑激活模式,是一种研究大脑高级认知的良好的神经心理学任务.  相似文献   

5.
社会认知神经科学是近几年国外新兴起的交叉学科,旨在阐述社会性、情绪性的体验与行为的心理和神经基础。它综合了认知神经科学与社会心理学研究的长处,对刻板印象、态度与态度改变、他人知觉、自我认知以及情绪与认知交互作用等方面进行了深入研究。主要范式是应用认知神经科学的方法来验证社会心理学在这些范畴上的各种不同理论观点,并在某些方面取得了突破性进展,但仍存在着广泛的发展空间。随着当前各种脑成像技术的革新,人们对情绪状态下大脑的神经活动的了解在原来认知的层面上有了进一步提升。本文主要阐述社会认知神经科学在情绪的脑机制研究上所取得的进展。  相似文献   

6.
多方式认知功能成像研究进展   总被引:5,自引:1,他引:4  
对大脑结构和功能的深入研究要求认知功能成像技术同时具有高时间分辨率和高空间分辨率.多方式认知功能成像通过不同成像技术fMRI/PET和EEG/MEG的结合,能够同时在空间定位和时间过程上研究大脑认知活动的动态过程.多方式认知功能成像已经被成功地应用于选择性注意、视觉通路、随意运动和语义加工等的研究,并揭示了相关大脑活动的空间和时间特征.今后的研究将进一步提高多方式认知功能成像的时空分辨率和准确性,以更深入地探索认知功能的神经机制.  相似文献   

7.
Li S 《生理学报》2011,63(5):472-476
利用非侵入式的功能性脑成像记录大脑活动极大地提升了我们对人类认知功能的理解.与此同时,分析成像数据的手段也逐渐从传统的一元方式向更加有效的多元分析转变.在本综述中,特别针对在认知神经科学领域占主导地位的功能性磁共振成像技术,介绍其多元数据分析方法的发展以及这种分析方法的生理学基础和未来发展方向.  相似文献   

8.
目的:探讨光纤成像技术用于记录小鼠眶额皮层奖赏相关神经元活性变化的可行性。方法:应用光纤成像的方法记录自由活动小鼠在饮用糖水时,携带有钙离子荧光探针(GCaMP6m)的眶额皮层奖赏相关神经元的活性。首先,在小鼠的眶额皮层注射携带GCaMP6m的腺相关病毒,同时在相应位点植入提前做好的光纤陶瓷插芯;等待小鼠术后恢复,病毒表达2周。然后在记录前,给予小鼠36小时禁水处理并运用光纤成像记录接受糖水刺激的小鼠眶额皮层锥体神经元的反应活性。最后,记录数据读入matlab软件进行数据分析并对小鼠进行心脏灌流、取脑、脑组织冰冻切片并显微荧光成像观察记录位点是否正确,病毒是否正常表达。结果:成功记录到对小鼠施加糖水刺激时,其眶额皮层内与奖赏相关的神经元活性变化。数据分析结果用热度图和事件相关的平均线图来表示。组织学切片及成像结果证实记录位点正确,病毒正常表达。结论:光纤成像的记录方法可以监测自由活动的小鼠在饮用糖水时眶额皮层内奖赏相关神经元活性的变化。  相似文献   

9.
当对视觉输入的信息有多种解释时,人们的知觉状态会在这些解释之间随机切换.目前,这种多稳态或双稳态知觉的神经机制仍处于争论之中.本研究分别以鲁宾花瓶和内克尔立方体两种双稳态图形为对象来研究双稳态知觉在大脑结构上的机制.首先,通过计算两种双稳态知觉的切换频率,发现两者切换频率之间有正相关关系.在此基础上,通过计算两种知觉切换频率与大脑灰质体积的相关性,发现鲁宾花瓶和内克尔立方体图形的切换频率均和右侧额下回的灰质体积存在显著的负相关.本研究表明,不同双稳态知觉之间具有共同的神经基础,这一共同的基础位于右侧额下回,支持了自上而下的加工在双稳态知觉中具有重要的作用.  相似文献   

10.
语义加工在语言理解过程中扮演着核心作用。随着认知神经科学技术的发展,在过去的20余年间,研究者们对语义加工的时间进程和大脑机制开展了深入的研究,构建了多个经典的理论模型。未来的研究应着重于对语义加工的概念进行更精细而系统的划分,在此基础上,从大脑功能协同与交互的角度以及不同成像技术辐合性运用的角度对语义加工开展更为系统的研究。  相似文献   

11.
Recent development in diffusion spectrum brain imaging combined to functional simulation has the potential to further our understanding of how structure and dynamics are intertwined in the human brain. At the intra-individual scale, neurocomputational models have already started to uncover how the human connectome constrains the coordination of brain activity across distributed brain regions. In parallel, at the inter-individual scale, nascent social neuroscience provides a new dynamical vista of the coupling between two embodied cognitive agents. Using EEG hyperscanning to record simultaneously the brain activities of subjects during their ongoing interaction, we have previously demonstrated that behavioral synchrony correlates with the emergence of inter-brain synchronization. However, the functional meaning of such synchronization remains to be specified. Here, we use a biophysical model to quantify to what extent inter-brain synchronizations are related to the anatomical and functional similarity of the two brains in interaction. Pairs of interacting brains were numerically simulated and compared to real data. Results show a potential dynamical property of the human connectome to facilitate inter-individual synchronizations and thus may partly account for our propensity to generate dynamical couplings with others.  相似文献   

12.
Emotional intelligence (EI) is a multi-faceted construct consisting of our ability to perceive, monitor, regulate and use emotions. Despite much attention being paid to the neural substrates of EI, little is known of the spontaneous brain activity associated with EI during resting state. We used resting-state fMRI to investigate the association between the amplitude of low-frequency fluctuations (ALFFs) and EI in a large sample of young, healthy adults. We found that EI was significantly associated with ALFFs in key nodes of two networks: the social emotional processing network (the fusiform gyrus, right superior orbital frontal gyrus, left inferior frontal gyrus and left inferior parietal lobule) and the cognitive control network (the bilateral pre-SMA, cerebellum and right precuneus). These findings suggest that the neural correlates of EI involve several brain regions in two crucial networks, which reflect the core components of EI: emotion perception and emotional control.  相似文献   

13.

Background

Strabismus is a disorder in which the eyes are misaligned. Persistent strabismus can lead to stereopsis impairment. The effect of strabismus on human brain is not unclear. The present study is to investigate whether the brain white structures of comitant exotropia patients are impaired using combined T1-weighted imaging and diffusion tensor imaging (DTI).

Principal Findings

Thirteen patients with comitant strabismus and twelve controls underwent magnetic resonance imaging (MRI) with acquisition of T1-weighted and diffusion tensor images. T1-weighted images were used to analyze the change in volume of white matter using optimized voxel-based morphology (VBM) and diffusion tensor images were used to detect the change in white matter fibers using voxel-based analysis of DTI in comitant extropia patients. VBM analysis showed that in adult strabismus, white matter volumes were smaller in the right middle occipital gyrus, right occipital lobe/cuneus, right supramarginal gyrus, right cingulate gyrus, right frontal lobe/sub-gyral, right inferior temporal gyrus, left parahippocampa gyrus, left cingulate gyrus, left occipital lobe/cuneus, left middle frontal gyrus, left inferior parietal lobule, and left postcentral gyrus, while no brain region with greater white matter volume was found. Voxel-based analysis of DTI showed lower fractional anisotropy (FA) values in the right middle occipital gyrus and right supramarginal gyrus in strabismus patients, while brain region with increased FA value was found in the right inferior frontal gyrus.

Conclusion

By combining VBM and voxel-based analysis of DTI results, the study suggests that the dorsal visual pathway was abnormal or impaired in patients with comitant exotropia.  相似文献   

14.
The human ability to flexibly alternate between tasks (i.e., task-switching) represents a critical component of cognitive control. Many functional magnetic resonance imaging (fMRI) studies have explored the neural basis of the task-switching. However, no study to date has examined how individual differences in intrinsic functional architecture of the human brain are related to that of the task-switching. In the present study, we took 11 task-switching relevant areas from a meta-analysis study as the regions of interests (ROIs) and estimated their intrinsic functional connectivity (iFC) with the whole brain. This procedure was repeated for 32 healthy adults based upon their fMRI scans during resting-state (rfMRI) to investigate the correlations between switching cost and the iFC strength across these participants. This analysis found that switch cost was negatively correlated with a set of iFC involved ROIs including left inferior frontal junction, bilateral superior posterior parietal cortex, left precuneus, bilateral inferior parietal lobule, right middle frontal gyrus and bilateral middle occipital gyrus. These connectivity profiles represent an intrinsic functional architecture of task-switching where the left inferior frontal junction plays a hub role in this brain-behavior association. These findings are highly reproducible in another validation independent sample and provide a novel perspective for understanding the neural basis of individual differences in task-switching behaviors reflected in the intrinsic architecture of the human brain.  相似文献   

15.
Schaefer M  Heinze HJ  Galazky I 《PloS one》2010,5(12):e15010

Background

The alien hand syndrome is a striking phenomenon characterized by purposeful and autonomous movements that are not voluntarily initiated. This study aimed to examine neural correlates of this rare neurological disorder in a patient with corticobasal degeneration and alien hand syndrome of the left hand.

Methodology/Principal Findings

We employed functional magnetic resonance imaging to investigate brain responses associated with unwanted movements in a case study. Results revealed that alien hand movements involved a network of brain activations including the primary motor cortex, premotor cortex, precuneus, and right inferior frontal gyrus. Conscious and voluntary movements of the alien hand elicited a similar network of brain responses but lacked an activation of the inferior frontal gyrus. The results demonstrate that alien and unwanted movements may engage similar brain networks than voluntary movements, but also imply different functional contributions of prefrontal areas. Since the inferior frontal gyrus was uniquely activated during alien movements, the results provide further support for a specific role of this brain region in inhibitory control over involuntary motor responses.

Conclusions/Significance

We discuss the outcome of this study as providing evidence for a distributed neural network associated with unwanted movements in alien hand syndrome, including brain regions known to be related to movement execution and planning as well as areas that have been linked to inhibition control (inferior frontal gyrus) and experience of agency (precuneus).  相似文献   

16.
目的:评估汉字字形刺激源在汉字认知fMRI研究中的有效性,并对参与汉字处理的脑皮层区域进行定位及初步的量化分析。方法:选择母语为汉语、经利手测试后为右利手且裸眼视力正常(大于等于1.0)的在校大学生10例(男6例,女4例)作为被试。试验任务采用组块设计,将汉字(非字、假字、真字)投射到屏幕上,受试者接受汉字字形图片的视觉刺激,按非字-假字-真字-非字-假字-真字顺序呈现,共6个block。数据处理及统计分析采用国际通用的AFNI软件。结果:左额叶上、中、下回(包括Broca's area)、左中央前回(BA6)、左顶上小叶及顶下小叶(包括缘上回及角回)及双侧枕叶、楔前叶显著激活;左颞叶梭状回(BA37)、右额下回及双侧颞中、上回及扣带回显著激活,左大脑半球的激活体积明显大于右侧大脑半球。结论:本研究设计的汉字字形刺激源结合功能磁共振成像技术可以对汉字处理的相关大脑皮层区域进行定位,为研究人脑加工处理汉字的神经机制提供了一种有效的无创性影像学方法,并应用fMRI技术进一步证实其优势半球为左半球,且需要多种脑区共同参与完成。本试验模式可望成为一种对语言障碍病人进行脑功能检查的有效手段,从而为指导临床治疗和评价预后提供更丰富的信息。  相似文献   

17.

Background

The spontaneous component of neuropathic pain (NP) has not been explored sufficiently with neuroimaging techniques, given the difficulty to coax out the brain components that sustain background ongoing pain. Here, we address for the first time the correlates of this component in an fMRI study of a group of eight patients suffering from diabetic neuropathic pain and eight healthy control subjects. Specifically, we studied the functional connectivity that is associated with spontaneous neuropathic pain with spatial independent component analysis (sICA).

Principal Findings

Functional connectivity analyses revealed a cortical network consisting of two anti-correlated patterns: one includes the left fusiform gyrus, the left lingual gyrus, the left inferior temporal gyrus, the right inferior occipital gyrus, the dorsal anterior cingulate cortex bilaterally, the pre and postcentral gyrus bilaterally, in which its activity is correlated negatively with pain and positively with the controls; the other includes the left precuneus, dorsolateral prefrontal, frontopolar cortex (both bilaterally), right superior frontal gyrus, left inferior frontal gyrus, thalami, both insulae, inferior parietal lobuli, right mammillary body, and a small area in the left brainstem, in which its activity is correlated positively with pain and negatively with the controls. Furthermore, a power spectra analyses revealed group differences in the frequency bands wherein the sICA signal was decomposed: patients'' spectra are shifted towards higher frequencies.

Conclusion

In conclusion, we have characterized here for the first time a functional network of brain areas that mark the spontaneous component of NP. Pain is the result of aberrant default mode functional connectivity.  相似文献   

18.
X Lin  K Ding  Y Liu  X Yan  S Song  T Jiang 《PloS one》2012,7(8):e43373
Amblyopia, also known as lazy eye, usually occurs during early childhood and results in poor or blurred vision. Recent neuroimaging studies have found cortical structural/functional abnormalities in amblyopia. However, until now, it was still not known whether the spontaneous activity of the brain changes in amblyopia subjects. In the present study, regional homogeneity (ReHo), a measure of the homogeneity of functional magnetic resonance imaging signals, was used for the first time to investigate changes in resting-state local spontaneous brain activity in individuals with anisometropic amblyopia. Compared with age- and gender-matched subjects with normal vision, the anisometropic amblyopia subjects showed decreased ReHo of spontaneous brain activity in the right precuneus, the left medial prefrontal cortex, the left inferior frontal gyrus, and the left cerebellum, and increased ReHo of spontaneous brain activity was found in the bilateral conjunction area of the postcentral and precentral gyri, the left paracentral lobule, the left superior temporal gyrus, the left fusiform gyrus, the conjunction area of the right insula, putamen and the right middle occipital gyrus. The observed decreases in ReHo may reflect decreased visuo-motor processing ability, and the increases in ReHo in the somatosensory cortices, the motor areas and the auditory area may indicate compensatory plasticity in amblyopia.  相似文献   

19.
The neural basis of self and identity has received extensive research. However, most of these existing studies have focused on situations where the internal representation of the self is consistent with the external one. The present study used fMRI methodology to examine the neural correlates of two different types of identity conflict: identity faking and concealment. Participants were presented with a sequence of names and asked to either conceal their own identity or fake another one. The results revealed that the right insular cortex and bilaterally inferior frontal gyrus were more active for identity concealment compared to the control condition, whereas identity faking elicited a significantly larger percentage signal increase than the control condition in the right superior frontal gyrus, left calcarine, and right caudate. These results suggest that different neural systems associated with both identity processing and deception were involved in identity concealment and faking.  相似文献   

20.
By detecting spontaneous low-frequency fluctuations (LFF) of blood oxygen level–dependent (BOLD) signals, resting-state functional magnetic resonance imaging (rfMRI) measurements are believed to reflect spontaneous cerebral neural activity. Previous fMRI studies were focused on the examination of motor-related areas and little is known about the functional changes in the extra-motor areas in amyotrophic lateral sclerosis (ALS) patients. The aim of this study is to investigate functional cerebral abnormalities in ALS patients on a whole brain scale. Twenty ALS patients and twenty age- and sex-matched healthy volunteers were enrolled. Voxel-based analysis was used to characterize the alteration of amplitude of low frequency fluctuation (ALFF). Compared with the controls, the ALS patients showed significantly decreased ALFF in the visual cortex, fusiform gyri and right postcentral gyrus; and significantly increased ALFF in the left medial frontal gyrus, and in right inferior frontal areas after grey matter (GM) correction. Taking GM volume as covariates, the ALFF results were approximately consistent with those without GM correction. In addition, ALFF value in left medial frontal gyrus was negatively correlated with the rate of disease progression and duration. Decreased functional activity observed in the present study indicates the underlying deficits of the sensory processing system in ALS. Increased functional activity points to a compensatory mechanism. Our findings suggest that ALS is a multisystem disease other than merely motor dysfunction and provide evidence that alterations of ALFF in the frontal areas may be a special marker of ALS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号