首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
摘要 目的:研究小鼠中脑腹侧被盖区(VTA)多巴胺能神经元接受的全脑输入性上游投射及其输出性下游投射,解析其全脑上下游神经环路连接。方法:用立体定位仪将辅助病毒AAV-EF1a-DIO-GT和AAV-EF1a-DIO-G的混合液(1:1)注射到DAT-cre转基因小鼠的VTA脑区,2周后将重组狂犬病毒(RV)EnVA-RV-mCherry微注射到VTA脑区,1周后RV病毒完成逆向跨突触感染并充分表达荧光蛋白,全脑冰冻切片,用全自动扫描荧光显微镜全脑拍片。用立体定位仪将顺行示踪病毒AAV-EF1a-DIO-GFP微注射到DAT-cre转基因小鼠的VTA脑区,2周后待病毒及荧光蛋白充分表达后,全脑冰冻切片,VTA区脑片用TH抗体行免疫荧光染色,全自动扫描荧光显微镜全脑拍片。结果:狂犬病毒逆向跨单级突触示踪结果显示,全脑许多脑区核团神经元表达RV病毒携带的红色荧光蛋白,主要包括前脑皮层、纹状体、伏隔核、下丘脑视前区、外侧下丘脑、下丘脑室旁核、杏仁核、腹侧被盖区、黑质、中缝背核、臂旁核、缰核。顺行示踪病毒结果显示,表达绿色荧光蛋白的纤维投射主要集中在内侧前额叶皮层、纹状体、伏隔核、背外侧隔核、杏仁核、外侧下丘脑几个脑区。结论:VTA多巴胺能神经元的上游输入性投射广泛的分布于全脑,包括前脑皮层、基底神经节区、下丘脑区、边缘系统、中脑的许多核团都向其发出纤维投射。VTA多巴胺神经元的下游输出性投射主要集中在基底神经节的伏隔核和纹状体,内侧前额叶皮层及下丘脑也有一定投射。  相似文献   

2.
近红外荧光蛋白因激发光和发射光波长位于近红外区,在动物组织中光吸收和光散射最低,更适宜于动物活体组织的深层成像.构建了一种携带近红外荧光蛋白(near-infrared fluorescent protein,iRFP)713基因的重组表达质粒pAAV-iRFP713,将重组表达质粒与辅助质粒共转染AAV-293细胞,包装重组腺相关病毒(recombinant adeno-associated virus,rAAV)rAAV-iRFP713.重组腺相关病毒表达载体感染体外培养的癌细胞,48h后,荧光显微镜检测显示近红外荧光蛋白在癌细胞中高效表达,荧光明亮.重组腺相关病毒表达载体注射小鼠骨骼肌,48h后,用近红外荧光活体成像系统检测证明近红外荧光蛋白在小鼠骨骼肌中表达较强, 活体组织成像清晰.实验结果表明近红外荧光蛋白在体内体外均能很好地表达并荧光成像,为动物活体组织标记和成像的研究提供新方法.  相似文献   

3.
目的噪声对人体最直接的危害是听力损伤,以往研究多关注外周听觉器官改变,其对听皮层神经元的影响并不清楚,本研究探讨飞机噪声刺激5天后,小鼠初级听皮层神经元的形态改变和凋亡相关变化。方法采用苏木素-伊红(hematoxylin and eosin,HE)染色检测小鼠神经元形态变化,采用免疫组织化学方法和Western blot检测B淋巴细胞瘤-白血病2蛋白(Bcl-2)、Bcl-2相关X蛋白(Bax)、天冬氨酸蛋白水解酶-3(caspase-3)蛋白表达。结果与对照组相比,噪声刺激可导致小鼠初级听皮层神经元体积变小、分布不均、颜色深染、胞浆不清、核固缩。噪声组小鼠听皮层神经元凋亡比例显著增加,Bax蛋白表达显著增加,而Bcl-2表达无明显改变,Bax/Bcl-2显著增加,同时伴有caspase-3水平增加。结论飞机噪声刺激可导致小鼠听皮层神经元形态异常,出现明显凋亡改变,其机制与Bax/Bcl-2信号通路及caspase-3活性增加有关。  相似文献   

4.
奖赏刺激和伴药环境之间的强烈关联记忆,使得成瘾者在戒除药物数月或数年后暴露于类似环境即可诱发复吸。研究成瘾记忆的神经生物学基础有重要意义。本研究以可卡因条件位置偏爱(conditioned place preference,CPP)实验为行为学模型模拟分析药物与环境之间关联的建立。c-Fos、Zif268是常用的反映神经元活动增加的即早基因标记物。本文旨在通过采用免疫组织荧光染色方法,对可卡因环境相关的奖赏记忆提取后小鼠各脑区c-Fos、Zif268表达进行定量,比较分析它们的表达差异,以此来观察环境相关奖赏记忆提取时不同脑区神经元的激活情况。C57BL/6小鼠分为三组:生理盐水提取组、可卡因环境相关奖赏记忆提取组以及可卡因未提取组。后两组均接受CPP训练(一侧为伴可卡因侧,另一侧为伴生理盐水侧),训练结束后可卡因环境相关奖赏记忆提取组提取相关记忆,可卡因未提取组不提取。生理盐水提取组在放入CPP箱两侧前均腹腔注射生理盐水。结果显示,在药物成瘾相关脑区伏隔核核部,可卡因环境相关奖赏记忆提取组c-Fos、Zif268蛋白表达量显著高于生理盐水提取组。可卡因环境相关奖赏记忆提取组杏仁核基底外侧核Zif268蛋白表达量显著高于生理盐水提取组。在中脑边缘多巴胺系统的其他相关脑区如前额叶皮层、海马等,各组间c-Fos、Zif268蛋白表达量并未观察到明显的差异。以上结果表明伏隔核中央核和杏仁核基底外侧核在可卡因环境相关奖赏记忆提取过程中被激活,这提示伏隔核中央核和杏仁核基底外侧核脑区内激活的神经元是可卡因环境相关奖赏记忆的重要神经基础,为进一步解析药物成瘾记忆机制打下了基础。  相似文献   

5.
该研究采用激光显微切割技术从小鼠大脑第五皮层捕获少量皮质脊髓投射神经元,并分析其分子生物学特征。首先,提取神经元微量RNA,再借助WT-ovation试剂盒扩增RNA,随后利用合成的cDNA进行荧光定量PCR实验,分析投射神经元核糖体蛋白相关基因的表达情况。结果发现,与大脑皮层其它皮层组织相比,第五皮层投射神经元内部分核糖体蛋白相关基因的表达相对较高。这表明第五皮层投射神经元可能具有活跃的蛋白质合成功能,是核糖体蛋白质的能量场所,借此维持第五皮层脊髓投射神经元长轴突和大胞体的能量需要。  相似文献   

6.
动物感觉输入的适应性影响了它们对外界环境改变的意识和反应.感觉通路各层次,诸如感受器、传入神经和中枢系统等,反应活性的降低可能与感觉适应性相关联.在感觉适应过程中,皮层局部网络中神经元和星形胶质细胞对信号的编程机制仍有待进一步研究.利用活体双光子成像、电生理记录即药理学方法,我们分析了小鼠barrel皮层神经元和星形胶质应答重复的胡须感觉输入动力学.相同特征的胡须感觉刺激诱发了神经元和星形胶质细胞反应活性的降低,并且它们的活动在空间上和时间上去同步化,神经元和星形胶质细胞之间的缺少协调性.这种神经元和星形胶质细胞功能在空间和时间性质上的下调被局部施加AMPA受体脱敏感抑制剂所逆转.因此,在胡须感觉适应过程中,barrel皮层神经元和星形胶质细胞反应活性的下降和去同步化是由AMPA受体脱敏感参与介导完成的.  相似文献   

7.
多人同步交互式记录是认知神经科学的一种新的研究范式,它可以揭示两个或多个个体的大脑间在社交情境下神经活动的耦合。这一目标仅靠单个大脑活动的记录与测量是无法实现的。功能性近红外光谱成像在进行多人同步交互记录研究中有独特的优势。该方面的研究已经涵盖了社会认知神经科学的多个领域。本研究使用近红外光谱成像对社交情境下自我表露的双人大脑前额皮层的活动进行交互式测量,并使用小波相关来分析双人大脑互动时的神经同步性。研究结果表明在进行社交对话时,被试对的大脑间左侧额中回、右侧眶额皮层和右侧额下回下部的活动同步性显著增强。共情能力与社交情境下脑间同步性的强度呈正相关,这种关系主要体现在右侧额下回。本研究支持了采用近红外光谱成像技术研究多人同步交互记录大脑间神经耦合的可行性和有效性。  相似文献   

8.
9.
眶额叶皮质与中脑边缘多巴胺奖赏系统有着复杂的相互纤维联系。先前的研究探讨了药物成瘾过程中眶额叶皮质的脑电活动。在本实验中,将探讨食物奖赏和渴求过程中该皮质的脑电活动。实验采用了两个环境:对照环境和食物刺激相关的环境。首先,训练大鼠在食物刺激相关的环境中吃巧克力花生豆,而后在该环境中设置两种不同的刺激方式:能看到和闻到但不能吃到(渴求实验),或者仍旧可以吃到巧克力花生豆(奖赏实验);同时进行左侧眶额叶皮质的脑电记录。结果发现,在食物刺激相关的环境中大鼠 Delta 频段(2-4 Hz)的脑电活动与食物刺激显著相关,此外,与在对照环境中相比,其相对功率在食物渴求时下降而在食物奖赏时升高。本实验表明,食物相关的奖励可以改变大鼠眶额叶皮质的脑电活动,而且,Delta 频段的脑电活动能够作为监测该奖励的一个指标。  相似文献   

10.
眶额叶皮质与中脑边缘多巴胺奖赏系统有着复杂的相互纤维联系。先前的研究探讨了药物成瘾过程中眶额叶皮质的脑电活动。在本实验中,将探讨食物奖赏和渴求过程中该皮质的脑电活动。实验采用了两个环境:对照环境和食物刺激相关的环境。首先,训练大鼠在食物刺激相关的环境中吃巧克力花生豆,而后在该环境中设置两种不同的刺激方式:能看到和闻到但不能吃到(渴求实验),或者仍旧可以吃到巧克力花生豆(奖赏实验);同时进行左侧眶额叶皮质的脑电记录。结果发现,在食物刺激相关的环境中大鼠Delta频段(2-4 Hz)的脑电活动与食物刺激显著相关,此外,与在对照环境中相比,其相对功率在食物渴求时下降而在食物奖赏时升高。本实验表明,食物相关的奖励可以改变大鼠眶额叶皮质的脑电活动,而且,Delta频段的脑电活动能够作为监测该奖励的一个指标。  相似文献   

11.
Genetically-encoded calcium indicators (GECIs) facilitate imaging activity of genetically defined neuronal populations in vivo. The high intracellular GECI concentrations required for in vivo imaging are usually achieved by viral gene transfer using adeno-associated viruses. Transgenic expression of GECIs promises important advantages, including homogeneous, repeatable, and stable expression without the need for invasive virus injections. Here we present the generation and characterization of transgenic mice expressing the GECIs GCaMP6s or GCaMP6f under the Thy1 promoter. We quantified GCaMP6 expression across brain regions and neurons and compared to other transgenic mice and AAV-mediated expression. We tested three mouse lines for imaging in the visual cortex in vivo and compared their performance to mice injected with AAV expressing GCaMP6. Furthermore, we show that GCaMP6 Thy1 transgenic mice are useful for long-term, high-sensitivity imaging in behaving mice.  相似文献   

12.
Genetically-encoded calcium indicators (GECIs) hold the promise of monitoring [Ca(2+)] in selected populations of neurons and in specific cellular compartments. Relating GECI fluorescence to neuronal activity requires quantitative characterization. We have characterized a promising new genetically-encoded calcium indicator-GCaMP2-in mammalian pyramidal neurons. Fluorescence changes in response to single action potentials (17+/-10% DeltaF/F [mean+/-SD]) could be detected in some, but not all, neurons. Trains of high-frequency action potentials yielded robust responses (302+/-50% for trains of 40 action potentials at 83 Hz). Responses were similar in acute brain slices from in utero electroporated mice, indicating that long-term expression did not interfere with GCaMP2 function. Membrane-targeted versions of GCaMP2 did not yield larger signals than their non-targeted counterparts. We further targeted GCaMP2 to dendritic spines to monitor Ca(2+) accumulations evoked by activation of synaptic NMDA receptors. We observed robust DeltaF/F responses (range: 37%-264%) to single spine uncaging stimuli that were correlated with NMDA receptor currents measured through a somatic patch pipette. One major drawback of GCaMP2 was its low baseline fluorescence. Our results show that GCaMP2 is improved from the previous versions of GCaMP and may be suited to detect bursts of high-frequency action potentials and synaptic currents in vivo.  相似文献   

13.
Both orbitofrontal cortex (OFC) and ventral striatum (vStr) have been identified as key structures that represent information about value in decision-making tasks. However, the dynamics of how this information is processed are not yet understood. We recorded ensembles of cells from OFC and vStr in rats engaged in the spatial adjusting delay-discounting task, a decision-making task that involves a trade-off between delay to and magnitude of reward. Ventral striatal neural activity signalled information about reward before the rat''s decision, whereas such reward-related signals were absent in OFC until after the animal had committed to its decision. These data support models in which vStr is directly involved in action selection, but OFC processes decision-related information afterwards that can be used to compare the predicted and actual consequences of behaviour.  相似文献   

14.
Multiple unit activity in deep layers of the frontal and motor cortices was recorded by chronically implanted semimicroelectrodes in waking cats with different levels of food motivation. From four to seven neuronal spike trains were selected from the recorded multiunit activity. Interactions between neighbouring neurons in the motor and frontal areas of the neocortex (within the local neuronal networks) and between the neurons of these areas (distributed neuronal networks) were estimated by means of statistical crosscorrelation analysis of spike trains within the range of delays from 0 to 100 ms. Neurons in the local networks were divided in two subgroups: the neurons with higher spike amplitudes with the dominance of divergent connections and neurons with lower spike amplitudes with the dominance of convergent connections. Strong monosynaptic connections (discharges with a delay of less than 2 ms) between the neurons with high- and low-amplitude spikes formed the background of the local networks. Connections between low-amplitude neurons in the frontal cortex and high-amplitude neurons in the motor cortex dominated in the distributed networks. A 24-hour food deprivation predominantly altered the late interneuronal crosscorrelations with time delays within the range of 2-100 ms in both local and distributed networks.  相似文献   

15.
While debate continues over whether somatosensory information is transmitted via labeled line, population coding, frequency coding, or some combination therein, researchers have begun to address this question at the level of the primary afferent by using optical approaches that enable the assessment of neural activity in hundreds to even thousands of neurons simultaneously. However, with limited availability of tools to optically assess electrical activity in large populations of neurons, researchers have turned to genetically encoded Ca2+ indicators (GECIs) including GCaMP to enable the detection of increases in cytosolic Ca2+ concentrations as a correlate for neuronal activity. One of the most widely used GECIs is GCaMP6, which is available in three different versions tuned for sensitivity (GCaMP6s), speed (GCaMP6f), or a balance of the two (GCaMP6m). In order to determine if these issues were unique to GCaMP6 itself, or if they were inherent to more than one generation of GCaMP, we also characterized jGCaMP7. In the present study, we sought to determine the utility of the three GCaMP6 isoforms to detect changes in activity in primary afferents at frequencies ranging from 0.1–30 Hz. Given the heterogeneity of sensory neurons, we also compared the performance of each GCaMP6 isoform in subpopulations of neurons defined by properties used to identify putative nociceptive afferents: cell body size, isolectin B4 (IB4) binding, and capsaicin sensitivity. Finally, we compared results generated with GCaMP6 with that generated from neurons expressing the next generation of GCaMP, jGCaMP7s and jGCaMP7f. A viral approach, with AAV9-CAG-GCaMP6s/m/f, was used to drive GECI expression in acutely dissociated rat trigeminal ganglion (TG) neurons, and neural activity was driven by electrical field stimulation. Infection efficiency with the AAV serotype was high >95 %, and the impact of GCaMP6 expression in TG neurons over the period of study (<10 days) on the regulation of intracellular Ca2+, as assessed with fura-2, was minimal. Having confirmed that the field stimulation evoked Ca2+ transients were dependent on Ca2+ influx secondary to the activation of action potentials and voltage-gated Ca2+ channels, we also confirmed that the signal-to-noise ratio for each of the isoforms was excellent, enabling detection of a single spike in>90% of neurons. However, the utility of the GCaMP6 isoforms to enable an assessment of the firing frequency let alone changes in firing frequency of each neuron was relatively limited and isoform specific: GCaMP6s and 6m had the lowest resolution, enabling detection of spikes at 3 Hz in 15% and 32% of neurons respectively, but it was possible to resolve discrete single spikes up to 10 Hz in 36% of GCaMP6f neurons. Unfortunately, using other parameters of the Ca2+ transient, such as magnitude of the transient or the rate of rise, did not improve the range over which these indicators could be used to assess changes in spike number or firing frequency. Furthermore, in the presence of ongoing neural activity, it was even more difficult to detect a change in firing frequency. The frequency response relationship for the increase in Ca2+ was highly heterogeneous among sensory neurons and was influenced by both the GCaMP6 isoform used to assess it, the timing between the delivery of stimulation trains (inter-burst interval), and afferent subpopulation. Notably, the same deficiencies were observed with jGCaMP7s and 7f in resolving the degree of activity as were present for the GCaMP6 isoforms. Together, these data suggest that while both GCaMP6 and jGCaMP7 are potentially useful tools in sensory neurons to determine the presence or absence of neural activity, the ability to discriminate changes in firing frequency ≥ 3 Hz is extremely limited. As a result, GECIs should probably not be used in sensory neurons to assess changes in activity within or between subpopulations of neurons.  相似文献   

16.
The responses of 3687 neurons in the macaque primary taste cortex in the insula/frontal operculum, orbitofrontal cortex (OFC) and amygdala to oral sensory stimuli reveals principles of representation in these areas. Information about the taste, texture of what is in the mouth (viscosity, fat texture and grittiness, which reflect somatosensory inputs), temperature and capsaicin is represented in all three areas. In the primary taste cortex, taste and viscosity are more likely to activate different neurons, with more convergence onto single neurons particularly in the OFC and amygdala. The different responses of different OFC neurons to different combinations of these oral sensory stimuli potentially provides a basis for different behavioral responses. Consistently, the mean correlations between the representations of the different stimuli provided by the population of OFC neurons were lower (0.71) than for the insula (0.81) and amygdala (0.89). Further, the encoding was more sparse in the OFC (0.67) than in the insula (0.74) and amygdala (0.79). The insular neurons did not respond to olfactory and visual stimuli, with convergence occurring in the OFC and amygdala. Human psychophysics showed that the sensory spaces revealed by multidimensional scaling were similar to those provided by the neurons.  相似文献   

17.
New technologies make it possible to measure activity from many neurons simultaneously. One approach is to analyze simultaneously recorded neurons individually, then group together neurons which increase their activity during similar behaviors into an “ensemble.” However, this notion of an ensemble ignores the ability of neurons to act collectively and encode and transmit information in ways that are not reflected by their individual activity levels. We used microendoscopic GCaMP imaging to measure prefrontal activity while mice were either alone or engaged in social interaction. We developed an approach that combines a neural network classifier and surrogate (shuffled) datasets to characterize how neurons synergistically transmit information about social behavior. Notably, unlike optimal linear classifiers, a neural network classifier with a single linear hidden layer can discriminate network states which differ solely in patterns of coactivity, and not in the activity levels of individual neurons. Using this approach, we found that surrogate datasets which preserve behaviorally specific patterns of coactivity (correlations) outperform those which preserve behaviorally driven changes in activity levels but not correlated activity. Thus, social behavior elicits increases in correlated activity that are not explained simply by the activity levels of the underlying neurons, and prefrontal neurons act collectively to transmit information about socialization via these correlations. Notably, this ability of correlated activity to enhance the information transmitted by neuronal ensembles is diminished in mice lacking the autism-associated gene Shank3. These results show that synergy is an important concept for the coding of social behavior which can be disrupted in disease states, reveal a specific mechanism underlying this synergy (social behavior increases correlated activity within specific ensembles), and outline methods for studying how neurons within an ensemble can work together to encode information.

Behaviorally-specific patterns of correlated activity between prefrontal neurons normally enhance the information that neuronal ensembles transmit about social behavior. This study shows that in a mouse model of autism, individual neurons continue to encode social information, but this additional information carried by patterns of correlated activity is lost.  相似文献   

18.
GCaMP is one of the most widely used calcium indicators in neuronal imaging and calcium cell biology.The newly developed GCaMP6 shows superior brightness and ultrasensitivity to calcium concentration change.In this study,we determined crystal structures of Ca2+-bound GCaMP6 monomer and dimer and presented detailed structural analyses in comparison with its parent version GCaMP5G.Our analyses reveal the structural basis for the outperformance of this newly developed Ca2+indicator.Three substitution mutations and the resulting changes of local structure and interaction explain the ultrasensitivity and increased fluorescence intensity common to all three versions of GCaMP6.Each particular substitution in the three GCaMP6 is also structurally consistent with their differential sensitivity and intensity,maximizing the potential of using GCaMP6 in solving diverse problems in neuronal research and calcium signaling.Our studies shall also be beneficial to further structure-guided optimization of GCaMP and facilitate the design of novel calcium indicators.  相似文献   

19.
The aim of this study is to evaluate the bioelectrical and structural–functional changes in frontal cortex after the bee venom (BV) experimental treatments simulating both an acute envenomation and a subchronic BV therapy. Wistar rats were subcutaneously injected once with three different BV doses: 700 μg/kg (T1 group), 2100 μg/kg (T3 group), and 62 mg/kg (sublethal dose—in TSL group), and repeated for 30 days with the lowest dose (700 μg/kg—in TS group). BV effects were assessed by electrophysiological, histological, histochemical, and ultrastructural methods. Single BV doses produced discharges of negative and biphasic sharp waves, and epileptiform spike-wave complexes. The increasing frequency of these elements suggested a dose-dependent neuronal hyperexcitation or irritation. As compared to the lower doses, the sublethal dose was responsible for a pronounced toxic effect, confirmed by ultrastructural data in both neurons and glial cells that underwent extensive, irreversible changes, triggering the cellular death. Subchronic BV treatment in TS group resulted in a slower frequency and increased amplitude of cortical activity suggesting neuronal loss. However, neurons were still stimulated by the last BV dose. Structural–functional data showed a reduced cellular density in frontal cortex of animals in this group, while the remaining neurons displayed both specific (stimulation of neuronal activity) and unspecific modifications (moderate alterations to necrotic phenomena). Molecular mechanisms involved in BV interactions with the nervous tissue are also discussed. We consider all these data very important for clinicians who manage patients with multiple bee stings, or who intend to set an appropriate BV therapy.  相似文献   

20.
Four cats were subjected to appetitive instrumental conditioning with light as a conditioned stimulus by the method of "active choice" of the reinforcement quality: short-delay conditioned bar-press responses were followed by bread-meat mixture and the delayed responses--by meat. The animals differed in behavior strategy: four animals preferred bar-pressing with long delay (so called "self-control" group); two animal preferred bar-pressing with short-delay (so called "impulsive" group). Then all the animals were learned to short-delay (1 s) instrumental conditioned reflex to light (CS+) reinforced by meat. The multiunit activity in the frontal cortex and the hippocampus (CA3) was recorded through chronically implanted nichrome-wire semimicroelectrodes. The interactions among the neighboring neurons in the frontal cortex and hippocampus (within the local neuronal networks) and between the neurons of the frontal cortex and hippocampus (distributed neuronal networks of frontal-hippocampal and hippocampal-frontal directions) were evaluated by means of statistical crosscorrelation analysis of the spike trains. Crosscorrelation interneuronal connections in the delay range 0-100 ms were explored. It was shown that the functional organization of the frontal and hippocampal neuronal networks differed in choice behavior and was similar during realization of short-delayed conditioned reflex. We suggest that the local and distributed neural networks of the frontal cortex and hippocampus take part in the realization of cognitive behavior, in particularly in the processes of the decision making.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号