首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
NS3蛋白在黄病毒科病毒生命活动中的作用   总被引:1,自引:0,他引:1  
黄病毒科病毒包括三个属,即黄病毒属(Flavivirus),瘟病毒属(Pestivirus)和丙型肝炎病毒属(Hepacivirus).这些病毒均能引起人和动物患严重疾病.黄病毒属黄热病毒(Yellow fever virus,YFV)、登革病毒(Dengue virus,DEN)能引起发烧、出血,患者死亡率极高,瘟病毒属牛腹泻病毒(Bovine viral diarrhea petivirus, BVDV)、猪瘟病毒(Classical swine fever virus, CSFV)等能引起其各自宿主家畜患严重疾病.近年来,又发现丙型肝炎病毒(Hepatitis C virus, HCV)与人类原发性肝癌和肝硬化密切相关.然而,目前仍没有对各种黄病毒科病毒有效的治疗方法.尤其是近年来干扰素对丙型肝炎治疗的疗效低,反复率高,使得研究更为有效的抗病毒药物成为各种病毒疾病治疗中亟待解决的问题之一.在BVDV的研究中发现,当非结构蛋白NS3蛋白与NS2蛋白一起以复合物的形式存在时,病毒对其寄主是非致病性的;而当NS3蛋白独立地存在时,病毒颗粒是致病性的[1].这提示NS3蛋白很可能与病毒的致病性密切相关.而且,序列分析表明非结构蛋白NS3(nonstructure protein 3)是黄病毒科病毒中最为保守的非结构蛋白.后来许多研究证明NS3蛋白参与蛋白质水解加工,以及病毒的复制,对病毒的生命循环是必需的.因此,NS3蛋白成为了人们研究的一个热点.  相似文献   

2.
单纯疱疹病毒1型(HSV-1)为有包膜的DNA病毒,能引起皮肤性疱疹、角膜炎、脑炎等症状.HSV-1感染细胞后,要么进入裂解性感染阶段,要么进入潜伏感染阶段.受感染的细胞常会启动免疫系统抵抗病毒,而病毒却通过某种机制巧妙地逃避宿主的免疫反应并进入潜伏.进入潜伏感染阶段的病毒又会因机体受某种刺激而被激活进入裂解感染期.在这期间,有两个关键的病毒蛋白一间层蛋白(Viral protein 16,VP16)和内膜蛋白(Virion host shutoff protein,VHS)倍受关注,它们既是HSV-1的结构蛋白,在病毒复制晚期参与病毒颗粒的组装,同时又作为重要的功能蛋白,在病毒感染早期发挥重要的转录调节功能.下面就这两个蛋白相关功能的研究进展作一简要综述:  相似文献   

3.
齐立  张立国  张智清 《病毒学报》2002,18(4):381-383
甲型流行性感冒(流感)病毒基因组由8个分节段的负链RNA组成,共编码10种蛋白,其中在病毒复制的早期即有NP蛋白和NS1蛋白的大量表达,提示这两种蛋白在病毒复制过程中及与细胞蛋白的相互作用中发挥着重要的功能.RNA第8节段编码两种蛋白,即非结构蛋白1(NS1)和2(NS2).  相似文献   

4.
非洲猪瘟(African swine fever,ASF)是由非洲猪瘟病毒(African swine fever virus,ASFV)感染引起的一种急性、出血性猪传染病,给疫情发生国家(地区)的养猪业造成重大经济损失.ASFV为双股DNA病毒,基因组含有150~167个开放阅读框(ORFs),可编码150~200种蛋白质,其中非结构蛋白有100余种.ASFV编码的酶、转录因子、调节宿主细胞功能蛋白和病毒免疫逃逸相关蛋白等作为重要的非结构蛋白,在病毒核苷酸代谢、DNA复制、修复、转录、蛋白修饰以及病毒与宿主细胞相互作用等过程中发挥重要作用,但仍有许多非结构蛋白的功能尚不明晰.因此,本文综述了 ASFV非结构蛋白在病毒感染中的作用,以期为ASFV非结构蛋白的进一步研究提供参考.  相似文献   

5.
程晔  陈炯  陈剑平 《中国科学C辑》2001,31(6):497-504
测定了从浙江省呈现矮花叶病症状的玉米上分离得到的一个马铃薯Y病毒属病毒RNA的核苷酸全序列. 该病毒分离物的RNA基因组由9596个核苷酸组成(不包括polyA尾). 单一的ORF由9192个核苷酸组成, 编码一个分子量为346.1 ku的聚合蛋白. 该蛋白结构特征与高粱花叶病毒(SrMV)中国甘蔗分离物和一个玉米矮花叶病毒(MDMV)保加利亚分离物基因组编码的蛋白非常相似. 序列分析表明, 该病毒分离物与甘蔗花叶病毒(SCMV)各分离物(已报道的仅为基因组3′末端序列)同源性最高, 与SrMV和MDMV同源性次之, 而与约翰逊草花叶病毒(JGMV)同源性最低. 根据马铃薯Y病毒属区分不同病毒和株系的分类标准, 报道的玉米病毒分离物应当鉴定为SCMV的一个株系. 然而, 该分离物在HC-Pro, P3和CI蛋白区域和SrMV中国甘蔗分离物具有极高的氨基酸同源性.  相似文献   

6.
冠状病毒(Coronavirus)是具有包膜的正单链RNA病毒,基因组大小介于26 000与32 000 nt之间,编码刺突蛋白(S)、包膜蛋白(E)、膜蛋白(M)和核壳蛋白(N)等四种结构蛋白、复制酶(ORF1a/b)与若干辅助蛋白,部分病毒还具有血细胞凝集素酯酶(HE),这些蛋白除维持病毒结构,还有促进感染与抵抗宿主免疫反应等功能,其中刺突蛋白可与宿主细胞表面的受体结合,使病毒包膜和宿主细胞的膜融合以感染细胞.冠状病毒的感染会影响细胞的许多信号转导途径,引发免疫反应,是一类可感染哺乳动物与鸟类的病毒.  相似文献   

7.
将猴免疫缺陷病毒(Simian immunodeficiency virus,SIVmm239)中gag基因的衣壳蛋白部分置换成人免疫缺陷病毒(Human immunodeficiency virus type1,HIV-1 HXBc2)的相应部分,构建出替换了衣壳蛋白基因的人/猿嵌合免疫缺陷病毒(SHIV)原病毒DNA.用此SHIV原病毒DNA转染293T细胞,细胞中能够检测到嵌合病毒基因的转录与翻译;在细胞培养液上清中亦可检测到装配出的病毒颗粒.病毒颗粒形态正常,含有基因组RNA,具有反转录酶活性,嵌合的外源衣壳蛋白能够正确剪切,形成棒状的核心.将此嵌合SHIV病毒感染MT4细胞,病毒能够吸附并进入细胞,能完成反转录过程,但不能增殖.  相似文献   

8.
运用RT-PCR技术从原发性肝癌(Hepatocellularcarcinoma,HCC)患者的癌旁组织中扩增了Hepsin基因编码区序列,该序列已被克隆并构建了pCMV-tag-HS表达质粒.将pCMV-tag-HS表达质粒和表达HBx蛋白的载体共转染HepG2.2.1.5细胞,观察HBx蛋白和Hepsin蛋白相互作用对HBV病毒复制和病毒蛋白表达的影响.研究结果表明共表达HBx蛋白、Hepsin蛋白可以协同提高HBV病毒颗粒在培养液中的拷贝数,并提高HBV病毒蛋白HBs、HBe的表达水平.这说明HBx蛋白和Hepsin蛋白相互作用可以增强HBV病毒的复制.  相似文献   

9.
将苜蓿银纹夜蛾多核衣壳核型多角体病毒(Autograph Californica nuclear polyhedrosis virus,AcMNPV)的野生型株HR3和温度敏感突变株ts317、ts538、ts8感染草地贪夜蛾(Spodoptera frugiperda)Sf21细胞,并在允许温度(25℃)或非允许温度(33℃)下培养,分别采用过氧化物酶标记的抗P47蛋白、抗P143蛋白、抗多体蛋白和抗病毒结构蛋白的单克隆抗体检测病毒增殖过程各蛋白出现的时间.结果表明1) P47蛋白是一种晚期(12hpi)表达蛋白,各突变株在允许温度(25℃)能够表达,但在非允许温度(33℃)不能表达.2)P143蛋白是一种早期(8hpi)表达蛋白,在允许温度和非允许温度时都能表达,ts8的表达量较少.3)在非允许温度条件下,蛋白质的合成速度高于允许温度.4)野生型和突变株ts317的病毒结构蛋白(P80、GP64、VP39、P24和PTP)在允许温度增殖下都能检测到,ts538和ts8表达量相对少些.5)除了GP64和P24外,ts538和ts8感染的细胞在非允许温度下不能表达病毒的结构蛋白.6)野生型毒株HR3在允许温度和非允许温度下的蛋白表达无明显差异.  相似文献   

10.
流行性乙型脑炎病毒(Japanese encephalitis virus,JEV)是一种严重危害人畜健康的虫媒病毒.表面囊膜蛋白(E蛋白)是该病毒的主要结构蛋白.E蛋白在介导病毒与宿主细胞的吸附、融合,决定病毒的血凝活性、细胞嗜性以及决定病毒毒力和诱导宿主产生保护性免疫反应中起重要作用.E蛋白结构域Ⅲ(EⅢ)是诱导中和抗体的重要区域.为确定乙型脑炎EⅢ的抗原表位,实验首先克隆了JEV疫苗株SA14-14-2的EⅢ区域,并用pGEX-6P-1载体进行融合表达,免疫印迹分析表明,该融合蛋白能被抗JEV血清识别.为了进一步对该结构域进行抗原表位作图,设计了14个覆盖该区域且部分重叠的短肽.将各短肽与GST进行融合表达与纯化.短肽融合蛋白经JEV阳性血清免疫印迹和EUSA免疫反应性扫描分析,结果鉴定出,E39(306TEKFSFAKNPVDTGHG320)、EA5-l(355VTNPFVATSSA366)、FA8-1(377FGDSYIV384)和E49(385VGRGDKQINHHWHKAG400)4个线性抗原表位.分别将4个抗原表位融合蛋白免疫小鼠,制备各抗原表位单因子血清,结果经体外病毒中和试验表明,E39为具有病毒中和活性的抗原表位.试验结果为进一步分析JEVE蛋白结构与功能以及诊断试剂和表位疫苗的研究提供了重要工作基础.  相似文献   

11.
The recent COVID-19 pandemic poses a global health emergency. Cellular entry of the causative agent SARS-CoV-2 is mediated by its spike protein interacting with cellular receptor-human angiotensin converting enzyme 2 (ACE2). Here, by using lentivirus based pseudotypes bearing spike protein, we demonstrated that entry of SARS-CoV-2 into host cells was dependent on clathrin-mediated endocytosis, and phosphoinositides played essential roles during this process. In addition, we showed that the intracellular domain and the catalytic activity of ACE2 were not required for efficient virus entry. Finally, we showed that the current predominant Delta variant, although with high infectivity and high syncytium formation, also entered cells through clathrin-mediated endocytosis. These results provide new insights into SARS-CoV-2 cellular entry and present proof of principle that targeting viral entry could be an effective way to treat different variant infections.  相似文献   

12.
董慧君  李彤  庄辉  向宽辉 《微生物学报》2023,63(4):1329-1339
目前新型冠状病毒(severe acute respiratory syndrome coronavirus 2, SARS-CoV-2)感染所致的新型冠状病毒肺炎(corona virus disease, COVID-19)已成为威胁人类健康和安全的全球性流行性疾病。随着新突变株的不断出现,寻找有效治疗药物和靶点迫在眉睫。干扰素刺激基因(interferon-stimulated genes, ISGs)是由干扰素(interferons, IFNs)诱导后表达上调的一类基因,在宿主抵抗病毒感染过程中发挥着至关重要的作用。研究表明,ISGs能够靶向许多病毒复制的不同阶段发挥抗病毒作用,然而SARS-CoV-2也进化出各种策略干扰或逃避宿主天然免疫。因此,全面了解SARS-CoV-2与ISGs相互作用,对于设计抗病毒策略至关重要。本文简要综述不同ISGs抵抗SARS-CoV-2的作用机制,为开发新型的抗病毒药物提供思路和理论依据。  相似文献   

13.
Viral proteins localize within subcellular compartments to subvert host machinery and promote pathogenesis. To study SARS-CoV-2 biology, we generated an atlas of 2422 human proteins vicinal to 17 SARS-CoV-2 viral proteins using proximity proteomics. This identified viral proteins at specific intracellular locations, such as association of accessary proteins with intracellular membranes, and projected SARS-CoV-2 impacts on innate immune signaling, ER-Golgi transport, and protein translation. It identified viral protein adjacency to specific host proteins whose regulatory variants are linked to COVID-19 severity, including the TRIM4 interferon signaling regulator which was found proximal to the SARS-CoV-2 M protein. Viral NSP1 protein adjacency to the EIF3 complex was associated with inhibited host protein translation whereas ORF6 localization with MAVS was associated with inhibited RIG-I 2CARD-mediated IFNB1 promoter activation. Quantitative proteomics identified candidate host targets for the NSP5 protease, with specific functional cleavage sequences in host proteins CWC22 and FANCD2. This data resource identifies host factors proximal to viral proteins in living human cells and nominates pathogenic mechanisms employed by SARS-CoV-2.  相似文献   

14.
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a positive-sense, single-stranded RNA virus that causes the potentially lethal Covid-19 respiratory tract infection. It does so by binding to host cell angiotensin converting enzyme 2 (ACE2) receptors, leading to endocytosis with the receptor, and subsequently using the host cell’s machinery to replicate copies of itself and invade new cells. The extent of the spread of infection in the body is dependent on the pattern of ACE2 expression and overreaction of the immune system. Additionally, by inducing an imbalance in the renin-angiotensin-aldosterone system (RAAS) and the loss of ACE2 would favour the progression of inflammatory and thrombotic processes in the lungs. No drug or vaccine has yet been approved to treat human coronaviruses. Hundreds of clinical trials on existing approved drugs from different classes acting on a multitude of targets in the virus life cycle are ongoing to examine potential effectiveness for the prevention and treatment of the infection. This review summarizes the SARS-CoV-2 virus life cycle in the host cell and provides a biological and pathological point of view for repurposed and experimental drugs for this novel coronavirus. The viral life cycle provides potential targets for drug therapy.  相似文献   

15.
Coronavirus disease 19 (COVID-19) is caused by a highly contagious RNA virus Severe Acute Respiratory Syndrome coronavirus-2 (SARS-CoV-2), originated in December 2019 in Wuhan, China. Since then, it has become a global public health concern and leads the disease table with the highest mortality rate, highlighting the necessity for a thorough understanding of its biological properties. The intricate interaction between the virus and the host immune system gives rise to diverse implications of COVID-19. RNA viruses are known to hijack the host epigenetic mechanisms of immune cells to regulate antiviral defence. Epigenetics involves processes that alter gene expression without changing the DNA sequence, leading to heritable phenotypic changes. The epigenetic landscape consists of reversible modifications like chromatin remodelling, DNA/RNA methylation, and histone methylation/acetylation that regulates gene expression. The epigenetic machinery contributes to many aspects of SARS-CoV-2 pathogenesis, like global DNA methylation and receptor angiotensin-converting enzyme 2 (ACE2) methylation determines the viral entry inside the host, viral replication, and infection efficiency. Further, it is also reported to epigenetically regulate the expression of different host cytokines affecting antiviral response. The viral proteins of SARS-CoV-2 interact with various host epigenetic enzymes like histone deacetylases (HDACs) and bromodomain-containing proteins to antagonize cellular signalling. The central role of epigenetic factors in SARS-CoV-2 pathogenesis is now exploited as promising biomarkers and therapeutic targets against COVID-19. This review article highlights the ability of SARS-CoV-2 in regulating the host epigenetic landscape during infection leading to immune evasion. It also discusses the ongoing therapeutic approaches to curtail and control the viral outbreak.  相似文献   

16.
The nucleocapsid protein is one of four structural proteins encoded by SARS-CoV-2 and plays a central role in packaging viral RNA and manipulating the host cell machinery, yet its dynamic behavior and promiscuity in nucleotide binding has made standard structural methods to address its atomic-resolution details difficult. To begin addressing the SARS-CoV-2 nucleocapsid protein interactions with both RNA and the host cell along with its dynamic behavior, we have specifically focused on the folded N-terminal domain (NTD) and its flanking regions using nuclear magnetic resonance solution studies. Studies performed here reveal a large repertoire of interactions, which includes a temperature-dependent self-association mediated by the disordered flanking regions that also serve as binding sites for host cell cyclophilin-A while nucleotide binding is largely mediated by the central NTD core. NMR studies that include relaxation experiments have revealed the complicated dynamic nature of this viral protein. Specifically, while much of the N-terminal core domain exhibits micro-millisecond motions, a central β-hairpin shows elevated inherent flexibility on the pico-nanosecond timescale and the serine/arginine-rich region of residues 176–209 undergoes multiple exchange phenomena. Collectively, these studies have begun to reveal the complexities of the nucleocapsid protein dynamics and its preferred interaction sites with its biological targets.  相似文献   

17.
The outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the coronavirus 2019 disease, has led to an ongoing global pandemic since 2019. Mass spectrometry can be used to understand the molecular mechanisms of viral infection by SARS-CoV-2, for example, by determining virus–host protein–protein interactions through which SARS-CoV-2 hijacks its human hosts during infection, and to study the role of post-translational modifications. We have reanalyzed public affinity purification–mass spectrometry data using open modification searching to investigate the presence of post-translational modifications in the context of the SARS-CoV-2 virus–host protein–protein interaction network. Based on an over twofold increase in identified spectra, our detected protein interactions show a high overlap with independent mass spectrometry-based SARS-CoV-2 studies and virus–host interactions for alternative viruses, as well as previously unknown protein interactions. In addition, we identified several novel modification sites on SARS-CoV-2 proteins that we investigated in relation to their interactions with host proteins. A detailed analysis of relevant modifications, including phosphorylation, ubiquitination, and S-nitrosylation, provides important hypotheses about the functional role of these modifications during viral infection by SARS-CoV-2.  相似文献   

18.
Stress granules (SGs) are non-membrane ribonucleoprotein condensates formed in response to environmental stress conditions via liquid–liquid phase separation (LLPS). SGs are involved in the pathogenesis of aging and aging-associated diseases, cancers, viral infection, and several other diseases. GTPase-activating protein (SH3 domain)-binding protein 1 and 2 (G3BP1/2) is a key component and commonly used marker of SGs. Recent studies have shown that SARS-CoV-2 nucleocapsid protein via sequestration of G3BPs inhibits SGs formation in the host cells. In this study, we have identified putative miRNAs targeting G3BP in search of modulators of the G3BP expression. These miRNAs could be considered as new therapeutic targets against COVID-19 infection via the regulation of SG assembly and dynamics.  相似文献   

19.
Viral infection in cells triggers a cascade of molecular defense mechanisms to maintain host-cell homoeostasis. One of these mechanisms is ADP-ribosylation, a fundamental post-translational modification (PTM) characterized by the addition of ADP-ribose (ADPr) on substrates. Poly(ADP-ribose) polymerases (PARPs) are implicated in this process and they perform ADP-ribosylation on host and pathogen proteins. Some viral families contain structural motifs that can reverse this PTM. These motifs known as macro domains (MDs) are evolutionarily conserved protein domains found in all kingdoms of life. They are divided in different classes with the viral belonging to Macro-D-type class because of their properties to recognize and revert the ADP-ribosylation. Viral MDs are potential pharmaceutical targets, capable to counteract host immune response. Sequence and structural homology between viral and human MDs are an impediment for the development of new active compounds against their function. Remdesivir, is a drug administrated in viral infections inhibiting viral replication through RNA-dependent RNA polymerase (RdRp). Herein, GS-441524, the active metabolite of the remdesivir, is tested as a hydrolase inhibitor for several viral MDs and for its binding to human homologs found in PARPs. This study presents biochemical and biophysical studies, which indicate that GS-441524 selectively modifies SARS-CoV-2 MD de-MARylation activity, while it does not interact with hPARP14 MD2 and hPARP15 MD2. The structural investigation of MD?GS-441524 complexes, using solution NMR and X-ray crystallography, discloses the impact of certain amino acids in ADPr binding cavity suggesting that F360 and its adjacent residues tune the selective binding of the inhibitor to SARS-CoV-2 MD.  相似文献   

20.
Hydroxychloroquine, used to treat malaria and some autoimmune disorders, potently inhibits viral infection of SARS coronavirus (SARS-CoV-1) and SARS-CoV-2 in cell-culture studies. However, human clinical trials of hydroxychloroquine failed to establish its usefulness as treatment for COVID-19. This compound is known to interfere with endosomal acidification necessary to the proteolytic activity of cathepsins. Following receptor binding and endocytosis, cathepsin L can cleave the SARS-CoV-1 and SARS-CoV-2 spike (S) proteins, thereby activating membrane fusion for cell entry. The plasma membrane-associated protease TMPRSS2 can similarly cleave these S proteins and activate viral entry at the cell surface. Here we show that the SARS-CoV-2 entry process is more dependent than that of SARS-CoV-1 on TMPRSS2 expression. This difference can be reversed when the furin-cleavage site of the SARS-CoV-2 S protein is ablated or when it is introduced into the SARS-CoV-1 S protein. We also show that hydroxychloroquine efficiently blocks viral entry mediated by cathepsin L, but not by TMPRSS2, and that a combination of hydroxychloroquine and a clinically-tested TMPRSS2 inhibitor prevents SARS-CoV-2 infection more potently than either drug alone. These studies identify functional differences between SARS-CoV-1 and -2 entry processes, and provide a mechanistic explanation for the limited in vivo utility of hydroxychloroquine as a treatment for COVID-19.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号