首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 199 毫秒
1.
植物体内钙信号及其在调节干旱胁迫中的作用   总被引:1,自引:0,他引:1  
钙作为植物体内第二信使广泛参与了植物响应的各种非生物和生物胁迫的信号传导。胁迫信号通过激活位于细胞质膜上的钙离子通道,产生胞质内特异性的钙信号,传递至钙信号感受蛋白,如钙调素(calmodulin,CaM)、钙依赖蛋白激酶(Ca2+-dependent protein kinases,CDPK)和类钙调磷酸酶B蛋白(calcineurin B-like protein,CBL)等,进而引起胞内一系列生理生化变化,最终对胁迫做出响应。钙信号在植物响应干旱胁迫信号系统中起枢纽作用,主要通过调节气孔运动,水通道蛋白(aquaporin,AQP)和抗氧化酶活性来减少水分流失,提高水分利用率,最终降低干旱对植物细胞的伤害,并具有一定的生态学功能。该文对近年来国内外有关植物体内钙信号的研究进展以及在干旱逆境中的调节作用进行综述,并对今后的研究做了展望。  相似文献   

2.
陈娇娆  续旭  胡章立  杨爽 《植物研究》2022,42(4):713-720
盐胁迫对植物的生长和发育造成严重影响,其危害包括渗透胁迫、离子毒害等,严重损害了农业生产和粮食安全。在盐胁迫下,植物相关感受器接受刺激,使得Ca2+通过细胞膜以及细胞内钙库膜上打开的Ca2+通道进入细胞质基质,导致细胞质内Ca2+浓度升高,产生钙信号。钙离子作为重要的第二信使,在植物细胞内和细胞间传递信号,信号往下游传递,在不同生长和发育阶段引起植物一系列的生理响应来应对盐胁迫影响。钙信号主要通过钙调蛋白(CaM)、钙调素样蛋白(CML)、钙依赖性蛋白激酶(CDPK)、钙调磷酸酶B样蛋白(CBL)和CBL互作蛋白激酶(CIPK)感知并将特异的钙信号信息传递到下游;从而激活植物盐胁迫生理响应。本文主要综述植物如何感知盐胁迫刺激,以及钙信号产生与传导机制,并对该研究领域需解决的问题进行了展望。  相似文献   

3.
植物细胞依赖细胞质膜上的受体感知并传递环境信号, 而受体通过与配体特异结合启动一系列下游信号转导途径, 维持植物正常的生命活动及其对外界环境变化的适应。类受体激酶是其中一类重要受体, 通常由胞外结合结构域、跨膜结构域和胞内激酶结构域3部分组成, 是植物适应外界环境变化的重要调节枢纽。FER属于CrRLK1L类受体蛋白激酶家族, 最早被发现在高等植物雌雄配子体识别过程中发挥作用。随后, 众多研究表明, FER在植物生长发育、激素间交互作用、植物与病原菌互作和逆境响应等多种生物学过程中扮演重要角色, 是近年来植物信号通路研究领域的“明星蛋白”。随着植物病理学研究的不断深入, FER在植物与病原菌互作过程中的功能备受关注。该文主要综述FER调节植物与病原菌互作的研究进展, 旨在为进一步解析类受体蛋白激酶在植物细胞响应病原菌侵染过程中的信号转导机制提供参考。  相似文献   

4.
植物CBL-CIPK信号系统的功能及其作用机理   总被引:5,自引:0,他引:5  
由类钙调磷酸酶B蛋白CBLs及其互作蛋白激酶CIPKs组成的信号系统是植物逆境胁迫信号传导的关键调控节点,是近几年植物逆境胁迫生理与分子生物学研究领域中的重要热点之一。文章主要介绍了CBLs和CIPKs基本功能结构域、CBL-CIPK信号系统在各种生物和非生物逆境胁迫响应、营养物质吸收及植物激素应答中的生物学功能及其作用机理。  相似文献   

5.
钙离子是一个多功能的第二信使,在植物响应各种生理刺激时,Ca2+参与调节植物的多种生长发育和胁迫适应过程。在这些过程中,Ca2+信号带有特异性标签,通过Ca2+结合蛋白及其下游靶蛋白感知不同刺激并翻译成响应的细胞反应。钙调素(CaM)和钙调素类蛋白(CML)是Ca2+主要感受器,通过调节不同靶蛋白的活性调控多种细胞功能。最近在植物对抗病原菌的防卫反应中有关Ca2+/CaM信号转导系统的研究取得了一定进展。重点关注植物免疫应答过程中受CaM/CML调控的信号组分的研究,包括参与Ca2+信号产生和Ca2+依赖的表达基因组分调控。  相似文献   

6.
钙调素(Calmodulin,CaM)是一个特别的对钙敏感的蛋白,在钙信号传导通路中扮演重要角色钙/钙调素依赖性蛋白激酶(Calcium/calmodulin-dependent kinases(CaMKs))与荷尔蒙、神经递质及其他信号引起的细胞反应相关作为重要的第二信使,钙/钙调素依赖的蛋白激酶Ⅱ(CaM-KⅡ)是一类在细胞中无所不在的表达的蛋白激酶,能维持细胞内的钙浓度在很低的水平,再增加后续的特定的钙激动刺激.钙/钙调素依赖的蛋白激酶Ⅱ独特的全酶结构和自我调节的性质使其对短暂的钙信号和胞内钙的变化能做出延长反应.本文从结构、合成、细胞分布、反应底物、生理功能等方面介绍了钙/钙调素依赖的蛋白激酶Ⅱ的激活对细胞信号传导的作用.  相似文献   

7.
类钙调素(calmodulin-like protein,CML)是植物体内一类钙受体蛋白,介导Ca2+与下游靶蛋白的相互作用,在植物抗逆反应中发挥重要作用.探究茶树中CML蛋白在逆境胁迫中的功能,为进一步研究茶树CsCML24对逆境胁迫的响应机理提供理论依据.以龙井43一年生茶树扦插苗为材料,克隆得到类钙调蛋白基因C...  相似文献   

8.
非生物逆境胁迫下植物钙信号转导的分子机制   总被引:13,自引:1,他引:12  
张和臣  尹伟伦  夏新莉 《植物学通报》2007,24(1):114-121,122
Ca^2+作为植物细胞中最重要的第二信使,参与植物对许多逆境信号的转导。在非生物逆境条件下,植物细胞质内的钙离子在时间、空间及浓度上会出现特异性变化,即诱发产生钙信号。钙信号再通过其下游的钙结合蛋白进行感受和转导,进而在细胞内引起一系列的生物化学反应以适应或抵制各种逆境胁迫。目前在植物细胞中发现Ca^2+/CDPK、Ca^2+/CaM和Ca^2+/CBL3类钙信号系统,研究表明它们与非生物逆境胁迫信号转导密切相关。本文通过从植物在非生物逆境条件下钙信号的感受、转导到产生适应性和抗性等方面,介绍钙信号转导分子机制的一些研究进展。  相似文献   

9.
非生物逆境胁迫下植物钙信号转导的分子机制   总被引:1,自引:0,他引:1  
Ca2+作为植物细胞中最重要的第二信使, 参与植物对许多逆境信号的转导。在非生物逆境条件下, 植物细胞质内的钙离子在时间、空间及浓度上会出现特异性变化, 即诱发产生钙信号。钙信号再通过其下游的钙结合蛋白进行感受和转导, 进而在细胞内引起一系列的生物化学反应以适应或抵制各种逆境胁迫。目前在植物细胞中发现Ca2+/CDPK、Ca2+/CaM和Ca2+/CBL 3类钙信号系统, 研究表明它们与非生物逆境胁迫信号转导密切相关。本文通过从植物在非生物逆境条件下钙信号的感受、转导到产生适应性和抗性等方面, 介绍钙信号转导分子机制的一些研究进展。  相似文献   

10.
CBL-CIPKs信号系统的研究进展   总被引:1,自引:0,他引:1  
Ca2+是植物体中普遍存在的第二信使,参与了植物众多的生长发育和逆境胁迫调控过程。钙调磷酸酶B类蛋白(calcineurin B-like protein,CBL)能够与一类蛋白激酶(CBL-interacting protein kinase,CIPK)互作来解码特异"钙信号"。该文总结了近几年在植物CBL-CIPKs信号系统研究领域的最新进展,包括CBL与CIPK互作特点及生理功能等,并对未来的研究方向作了展望。  相似文献   

11.
Calcium in plants   总被引:29,自引:0,他引:29  
Calcium is an essential plant nutrient. It is required for various structural roles in the cell wall and membranes, it is a counter-cation for inorganic and organic anions in the vacuole, and the cytosolic Ca2+ concentration ([Ca2+]cyt) is an obligate intracellular messenger coordinating responses to numerous developmental cues and environmental challenges. This article provides an overview of the nutritional requirements of different plants for Ca, and how this impacts on natural flora and the Ca content of crops. It also reviews recent work on (a) the mechanisms of Ca2+ transport across cellular membranes, (b) understanding the origins and specificity of [Ca2+]cyt signals and (c) characterizing the cellular [Ca2+]cyt-sensors (such as calmodulin, calcineurin B-like proteins and calcium-dependent protein kinases) that allow plant cells to respond appropriately to [Ca2+]cyt signals.  相似文献   

12.
Calcium in plant defence-signalling pathways   总被引:18,自引:0,他引:18  
In plant cells, the calcium ion is a ubiquitous intracellular second messenger involved in numerous signalling pathways. Variations in the cytosolic concentration of Ca2+ ([Ca2+]cyt) couple a large array of signals and responses. Here we concentrate on calcium signalling in plant defence responses, particularly on the generation of the calcium signal and downstream calcium-dependent events participating in the establishment of defence responses with special reference to calcium-binding proteins.  相似文献   

13.
植物钙吸收、转运及代谢的生理和分子机制   总被引:3,自引:0,他引:3  
周卫  汪洪 《植物学报》2007,24(6):762-778
钙是植物必需的营养元素。酸性砂质土壤中含钙较少, 导致在其土壤上生长的作物容易缺钙。另外由于果树果实、果菜类和包心叶菜类的蒸腾作用弱, 导致果树和蔬菜普遍生理缺钙。根系维管束组织可能通过共质体和质外体两种途径进行钙素吸收, 而果实则可通过非维管束组织直接吸收钙素。Ca2+通过Ca2+通道内流进入胞质, 并通过Ca2+-ATPase 和Ca2+/H+反向转运蛋白外流以保持胞质内低Ca2+浓度。为了应对植物发育和环境胁迫信号, Ca2+由质膜、液泡膜和内质网膜的Ca2+通道内流进入胞质, 导致胞质Ca2+浓度迅速增加, 产生钙瞬变和钙振荡, 传递到钙信号靶蛋白, 如钙调素、钙依赖型蛋白激酶及钙调磷酸酶B类蛋白, 引起特异的生理生化反应。本文综述了植物钙素吸收、转运以及代谢研究的最新进展, 包括植物对钙的需求和作物缺钙的原因, 根系维管束组织及果实钙素吸收机理, Ca2+跨膜运输特性, 钙的信使作用以及钙信号靶蛋白等方面内容。  相似文献   

14.
Calcium signals play an important role in many aspects of plant growth and development, including plant response to biotic and abiotic stress. The stimulus characteristic intracellular Ca2+ signals are generated in plant cells by a variety of stimuli, including changes in environmental conditions, interaction with microbes and growth and development processes. Cytoplasmatic calcium brings about responses by interacting with target proteins, like calcium-dependent kinases. In plant there are at least five classes of protein kinases (CDPK, CRK, CCaMK, CaMK and SnRK3), which activity is regulated by calcium ions. In this article the structure, regulation and function of calcium stimulated protein kinases are briefly reviewed.  相似文献   

15.
植物钙吸收、转运及代谢的生理和分子机制   总被引:6,自引:0,他引:6  
周卫  汪洪 《植物学通报》2007,24(6):762-778
钙是植物必需的营养元素。酸性砂质土壤中含钙较少,导致在其土壤上生长的作物容易缺钙。另外由于果树果实、果菜类和包心叶菜类的蒸腾作用弱,导致果树和蔬菜普遍生理缺钙。根系维管束组织可能通过共质体和质外体两种途径进行钙素吸收,而果实则可通过非维管束组织直接吸收钙素。Ca2 通过Ca2 通道内流进入胞质,并通过Ca2 -ATPase和Ca2 /H 反向转运蛋白外流以保持胞质内低Ca2 浓度。为了应对植物发育和环境胁迫信号,Ca2 由质膜、液泡膜和内质网膜的Ca2 通道内流进入胞质,导致胞质Ca2 浓度迅速增加,产生钙瞬变和钙振荡,传递到钙信号靶蛋白,如钙调素、钙依赖型蛋白激酶及钙调磷酸酶B类蛋白,引起特异的生理生化反应。本文综述了植物钙素吸收、转运以及代谢研究的最新进展,包括植物对钙的需求和作物缺钙的原因,根系维管束组织及果实钙素吸收机理,Ca2 跨膜运输特性,钙的信使作用以及钙信号靶蛋白等方面内容。  相似文献   

16.
Two novel approaches for the study of Ca2+-mediated signal transduction in stomatal guard cells are described. Stimulus-induced changes in guard-cell cytosolic Ca2+ ([Ca2+]cyt) were monitored using viable stomata in epidermal strips of a transgenic line of Nicotiana plumbaginifolia expressing aequorin (the proteinous luminescent reporter of Ca2+) and in a new transgenic line in which aequorin expression was targeted specifically to the guard cells. The results indicated that abscisic acid (ABA)-induced stomatal closure was accompanied by increases in [Ca2+]cyt in epidermal strips. In addition to ABA, mechanical and low-temperature signals directly affected stomatal behaviour, promoting rapid closure. Elevations of guard-cell [Ca2+]cyt play a key role in the transduction of all three stimuli. However, there were striking differences in the magnitude and kinetics of the three responses. Studies using Ca2+ channel blockers and the Ca2+ chelator EGTA further suggested that mechanical and ABA signals primarily mobilize Ca2+ from intracellular store(s), whereas the influx of extracellular Ca2+ is a key component in the transduction of low-temperature signals. These results illustrate an aspect of Ca2+ signalling whereby the specificity of the response is encoded by different spatial or kinetic Ca2+ elevations.  相似文献   

17.
Oxidative Signals in Tobacco Increase Cytosolic Calcium   总被引:11,自引:0,他引:11       下载免费PDF全文
Tobacco (Nicotiana plumbaginifolia) seedlings genetically transformed to express apoaequorin were incubated in h-coelenterazine to reconstitute the calcium-sensitive luminescent protein aequorin. Treatment of these seedlings with hydrogen peroxide resulted in a transient burst of calcium-dependent luminescence lasting several minutes. Even though the hydrogen peroxide stimulus was persistent, the change in cytosolic free calcium concentration ([Ca2+]cyt) was transient, suggesting the presence of a refractory period. When seedlings were pretreated with hydrogen peroxide, there was no increase in [Ca2+]cyt upon a second application, which confirmed the refractory character of the response. Only when the two treatments were separated by 4 to 8 hr was full responsiveness recovered. However, treatment with hydrogen peroxide did not inhibit mobilization of [Ca2+]cyt induced by either cold shock or touching, suggesting that these three signals mobilize different pools of intracellular calcium. To examine whether [Ca2+]cyt is regulated by the redox state of the cytoplasm, we pretreated seedlings with buthionine sulfoximine (to modify cellular glutathione levels) and inhibitors of ascorbate peroxidase. These inhibitors modify the hydrogen peroxide-induced transients in [Ca2+]cyt, which is consistent with their effects on the cellular prooxidant/antioxidant ratio. Treatment with hydrogen peroxide that elicited [Ca2+]cyt increases also brought about a reduction in superoxide dismutase enzyme activity. This reduction could be reversed by treatment with the calcium channel blocker lanthanum. This indicates that there is a role for calcium in plant responses to oxidative stress.  相似文献   

18.
A transient increase in cytosolic Ca2+ concentration ([Ca2+]cyt) is thought to be a prerequisite for an appropriate physiological response to both chilling and salt stress. The [Ca2+]cyt is raised by Ca2+ influx to the cytosol from the apoplast and/or intracellular stores. It has been speculated that different signals mobilise Ca2+ from different stores, but little is known about the origin(s) of the Ca2+ entering the cytosol in response to specific environmental challenges. We have utilised the developmentally regulated suberisation of endodermal cells, which is thought to prevent Ca2+ influx from the apoplast, to ascertain whether Ca2+ influx is required to increase [Ca2+]cyt in response to chilling or salt stress. Perturbations in [Ca2+]cyt were studied in transgenic Arabidopsis thaliana, expressing aequorin fused to a modified yellow fluorescent protein solely in root endodermal cells, during slow cooling of plants from 20 to 0.5 degrees C over 5 min and in response to an acute salt stress (0.333 m NaCl). Only in endodermal cells in the apical 4 mm of the Arabidopsis root did [Ca2+]cyt increase significantly during cooling, and the magnitude of the [Ca2+]cyt elevation elicited by cooling was inversely related to the extent of suberisation of the endodermal cell layer. No [Ca2+]cyt elevations were elicited by cooling in suberised endodermal cells. This is consistent with the hypothesis that suberin lamellae isolate the endodermal cell protoplast from the apoplast and, thereby, prevent Ca2+ influx. By contrast, acute salt stress increased [Ca2+]cyt in endodermal cells throughout the root. These results suggest that [Ca2+]cyt elevations, upon slow cooling, depend absolutely on Ca2+ influx across the plasma membrane, but [Ca2+]cyt elevations in response to acute salt stress do not. They also suggest that Ca2+ release from intracellular stores contributes significantly to increasing [Ca2+]cyt upon acute salt stress.  相似文献   

19.
Environmental stresses commonly encountered by plants lead to rapid transient elevations in cytosolic free calcium concentration ([Ca2+]cyt) (Bush, 1995; Knight et al., 1991). These cellular calcium (Ca2+) signals lead ultimately to the increased expression of stress-responsive genes, including those encoding proteins of protective function (Knight et al., 1996; Knight et al., 1997). The kinetics and magnitude of the Ca2+ signal, or 'calcium signature', differ between different stimuli and are thought to contribute to the specificity of the end response (Dolmetsch et al., 1997; McAinsh and Hetherington, 1998). We measured [Ca2+]cyt changes during treatment with mannitol (to mimic drought stress) in whole intact seedlings of Arabidopsis thaliana. The responses of plants which were previously exposed to osmotic and oxidative stresses were compared to those of control plants. We show here that osmotic stress-induced Ca2+ responses can be markedly altered by previous encounters with either osmotic or oxidative stress. The nature of the alterations in Ca2+ response depends on the identity and severity of the previous stress: oxidative stress pre-treatment reduced the mannitol-induced [Ca2+]cyt response whereas osmotic stress pretreatment increased the [Ca2+]cyt response. Therefore, our data show that different combinations of environmental stress can produce novel Ca2+ signal outputs. These alterations are accompanied by corresponding changes in the patterns of osmotic stress-induced gene expression and, in the case of osmotic stress pre-treatment, the acquisition of stress-tolerance. This suggests that altered Ca2+ responses encode a 'memory' of previous stress encounters and thus may perhaps be involved in acclimation to environmental stresses.  相似文献   

20.
Considerable progresses have taken place both in the methodology available to study changes in intracellular cytosolic calcium and in our understanding of calcium signaling cascades. It is generally accepted that the global calcium signal system functions importantly in coping with plant abiotic stresses, especially drought stress, which has been proved further by the recent transgenic and molecular breeding reports under soil water deficits. In plant cells, calcium plays roles as a universal transducer coupling a wide range of extracellular stimuli with intracellular responses. Different extracellular stimuli trigger specific calcium signatures: dynamics, amplitude and duration of calcium transients specify the nature, implication and intensity of stimuli. Calcium-binding proteins (sensors) play a critical role in decoding calcium signatures and transducing signals by activating specific targets and corresponding metabolic pathways. Calmodulin (CAM) is a calcium sensor known to regulate the activity of many mammalian proteins, whose targets in plants are now being identified. Higher plants possess a rapidly growing list of CAM targets with a variety of cellular functions. Nevertheless, many targets appear to be unique to higher plant cells and remain characterized, calling for a concerted effort from plant and animal scientists to elucidate their functions. To date, three major classes of plant calcium signals encoding elements in the calcium signal system, including calcium-permeable ion channels,Ca(2)+/ H(+) antiporters and Ca(2)+-ATPases, are responsible for drought stress signal transduction directly or indirectly. This review summarizes the current knowledge of calcium signals involved in plant abiotic stresses and presents suggestions for future focus areas of study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号