首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 350 毫秒
1.
水孔蛋白(aquaporin,AQP)作为一种功能性跨膜输水蛋白,对植物体形成水选择性运输通道并实现水分的跨膜运输起到重要的作用.当植物处于盐、干旱、低温等逆境胁迫状态时,体内的水分平衡被打破,水孔蛋白在水分运输和胞内渗透压的调控等方面表现出重要作用.综述了植物抗逆反应中水孔蛋白表达调控的研究进展.  相似文献   

2.
钙信号是植物生长发育和逆境响应的重要调控因子, 是植物生理与逆境生物学研究领域中的热点之一。当植物细胞受到外界逆境刺激时, 其胞内会产生具有时空特异性的Ca2+信号变化, 这种变化首先被胞内钙感受器所感知并解码, 再由钙感受器互作蛋白将信号传递到下游, 从而激活下游早期响应基因的表达或相关离子通道的活性, 最终产生特异性逆境响应。植物细胞通过感知胞内钙信号的变化如何识别来自外界不同性质或不同强度的刺激, 是近几年植物生物学家所关注的科学问题。文章主要总结了近几年在植物钙感受器研究领域中的最新进展, 包括钙依赖蛋白激酶(CDPKs)、钙调素(CaMs)、类钙调素蛋白(CMLs)、类钙调磷酸酶B蛋白(CBLs)及其互作蛋白激酶(CIPKs)等的结构、功能及其介导的逆境信号途径, 并提供新的见解和展望。  相似文献   

3.
干旱胁迫是严重影响全球作物生产的非生物胁迫之一,研究植物耐旱机制已成为一个重要领域。水通道蛋白是一类特异、高效转运水及其它小分子底物的膜通道蛋白,在植物中具有丰富的亚型,参与调节植物的水分吸收和运输。近10年来,水通道蛋白在植物不同生理过程中的作用,一直受到研究人员的关注,特别是在非生物胁迫方面,而研究表明水通道蛋白在干旱胁迫下对植物的耐旱性起着至关重要的作用,能维持细胞水分稳态和调控环境胁迫快速响应。水通道蛋白在植物耐旱过程中的调控机制及功能较复杂,而关于其应答机制和不同亚型功能性研究的报道甚少。该文综述了植物水通道蛋白的分类、结构、表达调控和活性调节,分别从植物水通道蛋白响应干旱表达调控机制、水通道蛋白基因表达的时空特异性、水通道蛋白基因的表达与蛋白丰度,水通道蛋白基因的耐旱转化四个方面阐明干旱胁迫下植物水通道蛋白的表达,重点阐述其参与植物干旱胁迫应答的作用机制,并提出水通道蛋白研究的主要方向。  相似文献   

4.
陈娇娆  续旭  胡章立  杨爽 《植物研究》2022,42(4):713-720
盐胁迫对植物的生长和发育造成严重影响,其危害包括渗透胁迫、离子毒害等,严重损害了农业生产和粮食安全。在盐胁迫下,植物相关感受器接受刺激,使得Ca2+通过细胞膜以及细胞内钙库膜上打开的Ca2+通道进入细胞质基质,导致细胞质内Ca2+浓度升高,产生钙信号。钙离子作为重要的第二信使,在植物细胞内和细胞间传递信号,信号往下游传递,在不同生长和发育阶段引起植物一系列的生理响应来应对盐胁迫影响。钙信号主要通过钙调蛋白(CaM)、钙调素样蛋白(CML)、钙依赖性蛋白激酶(CDPK)、钙调磷酸酶B样蛋白(CBL)和CBL互作蛋白激酶(CIPK)感知并将特异的钙信号信息传递到下游;从而激活植物盐胁迫生理响应。本文主要综述植物如何感知盐胁迫刺激,以及钙信号产生与传导机制,并对该研究领域需解决的问题进行了展望。  相似文献   

5.
植物SnRKs家族在胁迫信号通路中的调节作用   总被引:2,自引:0,他引:2  
张金飞  李霞 《植物学报》2017,52(3):346-357
蔗糖非发酵1(SNF1)相关蛋白激酶家族(SnRKs)是植物胁迫响应过程中的一类关键蛋白激酶。在响应生物胁迫时,SnRKs可通过参与活性氧和水杨酸介导的信号转导途径,增强植物对生物侵害的耐受性。在响应非生物胁迫时,SnRKs通过脱落酸(ABA)介导的信号通路,增强植株对干旱、盐碱和高温等的耐受性;且通过独立于ABA的信号通路,SnRKs可调控胞内能量状态,维持离子平衡。该文总结了SnRKs蛋白激酶作为胁迫信号通路中的主要调节因子的最新研究进展,并展望了未来的研究方向。  相似文献   

6.
类钙调素(calmodulin-like protein,CML)是植物体内一类钙受体蛋白,介导Ca2+与下游靶蛋白的相互作用,在植物抗逆反应中发挥重要作用.探究茶树中CML蛋白在逆境胁迫中的功能,为进一步研究茶树CsCML24对逆境胁迫的响应机理提供理论依据.以龙井43一年生茶树扦插苗为材料,克隆得到类钙调蛋白基因C...  相似文献   

7.
钙依赖性蛋白激酶(CDPKs)是一类重要的钙信号感受蛋白和响应蛋白,在植物干旱、低温、盐碱等非生物胁迫应答中起着重要的调控作用。为探讨陆地棉GhCDPK1基因在干旱胁迫下所起的作用,该研究利用实时荧光定量PCR技术分析了PEG模拟干旱胁迫下该基因的表达量,发现GhCDPK1基因受干旱胁迫诱导。通过构建植物表达载体pCAMBIA2300-GhCDPK1,采用农杆菌介导的叶盘法转化模式植物烟草,发现干旱胁迫下转基因植株保水能力明显高于野生型植株,叶绿素、脯氨酸、可溶性蛋白含量及POD、SOD活性也高于野生型植株,而丙二醛含量低于野生型植株。研究结果表明,GhCDPK1基因作为正向调控因子响应干旱胁迫诱导,过表达GhCDPK1基因可以使植株积累更多的渗透调节物质、增强抗氧化系统酶的活性和维持细胞膜的稳定性来提高植物抵御外界干旱胁迫的能力。  相似文献   

8.
类钙调素蛋白(Calmodulin-like protein)是高等植物中最重要的Ca~(2+)感受器之一,该家族蛋白参与植物对环境的适应过程。为了探究类钙调素蛋白是否参与到植物对逆境条件的响应过程,以天山雪莲低温转录组为依据,克隆获得SikCML7,生物信息学分析表明SikCML7的开放阅读框(ORF)为450 bp,编码149个氨基酸,含有4个钙结合区域(EF-hands)。系统进化树分析表明SikCML7与拟南芥AtCML9进化亲缘性较为接近。实时定量PCR结果显示,天山雪莲在经过不同低温(4℃/-2℃)、干旱和盐胁迫处理后,SikCML7的表达均呈上调趋势,但在冷害胁迫和冻害胁迫条件下的表达模式差异巨大,对干旱和盐胁迫也有一定的响应。SikCML7参与了天山雪莲对低温、干旱和盐胁迫响应的过程。  相似文献   

9.
植物钙吸收、转运及代谢的生理和分子机制   总被引:6,自引:0,他引:6  
周卫  汪洪 《植物学通报》2007,24(6):762-778
钙是植物必需的营养元素。酸性砂质土壤中含钙较少,导致在其土壤上生长的作物容易缺钙。另外由于果树果实、果菜类和包心叶菜类的蒸腾作用弱,导致果树和蔬菜普遍生理缺钙。根系维管束组织可能通过共质体和质外体两种途径进行钙素吸收,而果实则可通过非维管束组织直接吸收钙素。Ca2 通过Ca2 通道内流进入胞质,并通过Ca2 -ATPase和Ca2 /H 反向转运蛋白外流以保持胞质内低Ca2 浓度。为了应对植物发育和环境胁迫信号,Ca2 由质膜、液泡膜和内质网膜的Ca2 通道内流进入胞质,导致胞质Ca2 浓度迅速增加,产生钙瞬变和钙振荡,传递到钙信号靶蛋白,如钙调素、钙依赖型蛋白激酶及钙调磷酸酶B类蛋白,引起特异的生理生化反应。本文综述了植物钙素吸收、转运以及代谢研究的最新进展,包括植物对钙的需求和作物缺钙的原因,根系维管束组织及果实钙素吸收机理,Ca2 跨膜运输特性,钙的信使作用以及钙信号靶蛋白等方面内容。  相似文献   

10.
水分胁迫积累的ABA诱导抗氧化防护系统的信号级联   总被引:3,自引:0,他引:3  
水分胁迫是限制植物生长发育的主要胁迫因子之一。植物通过感受刺激,产生和传递信号、启动多种防御机制对水分胁迫做出响应和适应。脱落酸(ABA)作为一种重要的植物体内胁迫激素,参与了许多这样的反应。研究表明,ABA增强植物水分胁迫的忍耐力与ABA诱导的抗氧化剂防护系统有关;且细胞溶质Ca2 ([Ca2 ]i)、活性氧(ROS)等许多第二信使参与了ABA诱导的信号转导过程。本文就这些信号分子在水分胁迫积累的内源ABA诱导的抗氧化剂防护系统中的作用作一综述。  相似文献   

11.
Calcium ion (Ca2+) is one of the very important ubiquitous intracellular second messenger molecules involved in many signal transduction pathways in plants. The cytosolic free Ca2+ concentration ([Ca2+]cyt) have been found to increased in response to many physiological stimuli such as light, touch, pathogenic elicitor, plant hormones and abiotic stresses including high salinity, cold and drought. This Ca2+ spikes normally result from two opposing reactions, Ca2+ influx through channels or Ca2+ efflux through pumps. The removal of Ca2+ from the cytosol against its electrochemical gradient to either the apoplast or to intracellular organelles requires energized ‘active’ transport. Ca2+-ATPases and H+/Ca2+ antiporters are the key proteins catalyzing this movement. The increased level of Ca2+ is recognised by some Ca2+-sensors or calcium-binding proteins, which can activate many calcium dependent protein kinases. These kinases regulate the function of many genes including stress responsive genes, resulted in the phenotypic response of stress tolerance. Calcium signaling is also involved in the regulation of cell cycle progression in response to abiotic stress. The regulation of gene expression by cellular calcium is also crucial for plant defense against various stresses. However, the number of genes known to respond to specific transient calcium signals is limited. This review article describes several aspects of calcium signaling such as Ca2+ requiremant and its role in plants, Ca2+ transporters, Ca2+-ATPases, H+/ Ca2+-antiporter, Ca2+-signature, Ca2+-memory and various Ca2+-binding proteins (with and without EF hand).Key Words: Calcium binding proteins, Ca2+ channel, Ca2+-dependent protein kinases, Ca2+/H+ antiport, calcium memory, calcium sensors, calcium signatures, Ca2+-transporters, EF hand motifs, plant signal transduction  相似文献   

12.
Calcium may be involved in plant tolerance to water deficit by regulating antioxidant metabolism or/and water relations. This study was designed to examine whether external Ca2+ would stimulate drought tolerance in cultured liquorice cells. Water stress induced by 15% PEG significantly reduced fresh weight and relative water content in liquorice cells, but external Ca2+ markedly increased them after stress for 7 days. The activities of catalase (CAT), superoxide dismutase (SOD) declined and activity of peroxidase (POD) slowly increased during water stress imposition. External calcium significantly enhanced SOD and CAT activities, but the effect on POD activity was weak. The effect of external Ca2+ on water deficit tolerance in liquorice cells was not due to the osmotic adjustment in culture medium. Under nonstress conditions, external calcium slightly increased the activities of SOD, CAT, and POD. Ca2+ signal in liquorice cells may be different under stress and nonstress conditions. Under water stress, Ca2+ signal involves in reactive oxygen species transduction pathway and affects the processes participating in regulation of antioxidative enzymes; under nonstress conditions, Ca2+ signal coming from external calcium might not participate in ROS signal transduction pathway resulting in antioxidative defense response in liquorice cells. Less malondialdehyde was accumulated after water stress for 7 days in Ca2+-treated cells than in untreated cells. It was proposed that external calcium could reduce the damage of water deficit and stimulate tolerance to it in liquorice cells by mitigating oxidative stress.  相似文献   

13.
Serving as an important second messenger, calcium ion has unique properties and universal ability to transmit diverse signals that trigger primary physiological actions in cells in response to hormones, pathogens, light, gravity, and stress factors. Being a second messenger of paramount significance, calcium is required at almost all stages of plant growth and development, playing a fundamental role in regulating polar growth of cells and tissues and participating in plant adaptation to various stress factors. Many researches showed that calcium signals decoding elements are involved in ABA-induced stomatal closure and plant adaptation to drought, cold, salt and other abiotic stresses. Calcium channel proteins like AtTPC1 and TaTPC1 can regulate stomatal closure. Recently some new studies show that Ca2+ is dissolved in water in the apoplast and transported primarily from root to shoot through the transpiration stream. The oscillating amplitudes of [Ca2+]o and [Ca2+]i are controlled by soil Ca2+ concentrations and transpiration rates. Because leaf water use efficiency (WUE) is determined by stomatal closure and transpiration rate, so there may be a close relationship between Ca2+ transporters and stomatal closure as well as WUE, which needs to be studied. The selection of varieties with better drought resistance and high WUE plays an increasing role in bio-watersaving in arid and semi-arid areas on the globe. The current paper reviews the relationship between calcium signals decoding elements and plant drought resistance as well as other abiotic stresses for further study.  相似文献   

14.
Vicia faba plants were grown under drought conditions and variously supplemented with calcium. Drought stress markedly inhibited the growth of Vicia faba plants. Ca2+ ameliorated to a large extent this inhibition; fresh weight, dry mass, chlorophyll and water contents were variably improved. Membranes were, also, negatively affected by drought stress and percentage leakage was elevated. Concomitantly, the efflux of K+ and Ca2+ was enhanced by drought but lowered by supplemental Ca2+. In addition, membranes of droughted plants were sensitive to the Ca2+ channel blockers lanthanum, nifedipine or verapamil more than those of control plants. These blockers significantly increased the efflux of K+ and Ca2+ as well as percentage leakage particularly in those of droughted plants. The above results indicated that the functioning of the calcium channels was negatively affected when Vicia faba was grown under drought conditions. However, much of the drought-induced disorders including sensitivity towards the applied calcium channel blockers could be ameliorated by supplemental Ca2+.  相似文献   

15.
Chemical signaling under abiotic stress environment in plants   总被引:1,自引:0,他引:1  
Many chemicals are critical for plant growth and development and play an important role in integrating various stress signals and controlling downstream stress responses by modulating gene expression machinery and regulating various transporters/pumps and biochemical reactions. These chemicals include calcium (Ca2+), cyclic nucleotides, polyphosphoinositides, nitric oxide (NO), sugars, abscisic acid (ABA), jasmonates (JA), salicylic acid (SA) and polyamines. Ca2+ is one of the very important ubiquitous second messengers in signal transduction pathways and usually its concentration increases in response to the stimuli including stress signals. Many Ca2+ sensors detect the Ca2+ signals and direct them to downstream signaling pathways by binding and activating diverse targets. cAMP or cGMP protects the cell with ion toxicity. Phosphoinositides are known to be involved both in transmission of signal across the plasma membrane and in intracellular signaling. NO activates various defense genes and acts as a developmental regulator in plants. Sugars affect the expression of many genes involved in photosynthesis, glycolysis, nitrogen metabolism, sucrose and starch metabolism, defense mechanisms and cell cycle regulation. ABA, JA, SA and polyamines are also involved in many stress responses. Cross-talk between these chemical signaling pathways is very common in plant responses to abiotic and bitotic factors. In this article we have described the role of these chemicals in initiating signaling under stress conditions mainly the abiotic stress.Key words: ABA, abiotic stress, Ca2+ binding proteins, calcium signaling, cyclic nucleotides, nitric oxide, phosphoinositides signaling, signal transduction, sugar signaling  相似文献   

16.
Calcium (Ca2+) signals are essential transducers and regulators in many adaptive and developmental processes in plants. Protective responses of plants to a variety of environmental stress factors are mediated by transient changes of Ca2+ concentration in plant cells. Ca2+ ions are quickly transported by channel proteins present on the plasma membrane. During responses to external stimuli, various signal molecules are transported directly from extracellular to intracellular compartments via Ca2+ channel proteins. Three types of Ca2+ channels have been identified in plant cell membranes: voltage-dependent Ca2+-permeable channels (VDCCs), which is sorted to depolarization-activated Ca2+-permeable channels (DACCs) and hyperpolarization-activated Ca2+-permeable channels (HACCs), voltage-independent Ca2+-permeable channels (VICCs). They make functions in the abiotic stress such as TPCs, CNGCs, MS channels, annexins which distribute in the organelles, plasma membrane, mitochondria, cytosol, intracelluar membrane. This review summarizes recent advances in our knowledge of many types of Ca2+ channels and Ca2+ signals involved in abiotic stress resistance and responses in plant cells.  相似文献   

17.
Role of Ca2+ in Drought Stress Signaling in Wheat Seedlings   总被引:1,自引:0,他引:1  
Plants use complex signal transduction pathways to perceive and react to various biotic and/or abiotic stresses. As a consequence of this signaling, plants can modify their metabolism to adapt themselves to new conditions. One such change is the accumulation of proline in response to drought and salinity stresses. We have studied drought and salinity induced proline accumulation and the roles of Ca2+ (10 mM) and indoleacetic acid (IAA, 0.3 mM) in this response. Subjecting seedlings to both drought (6% polyethylene glycol, PEG) and salinity (150 mM NaCl) stress resulted in a dramatic increase in proline accumulation (7-fold higher than control level). However, the application of Ca2+ along with these stress factors had different effects. Unlike the salinity stress, Ca2+ prevented the drought induced proline accumulation indicating that these stress factors use distinct signaling pathways to induce similar responses. Experiments with IAA and EGTA (10 mM) supported this interpretation and suggested that Ca2+ and auxin participate in signaling mechanisms of drought-induced proline accumulation. Drought and salt stress-induced proline accumulation was compared on salt resistant (cv. Gerek 79) and salt sensitive (cv. Bezostaya) wheat varieties. Although proline level of the first was twofold lower than that of the second in control, relative proline accumulation was dramatically higher in the case of the salt resistant wheat variety under stress conditions.  相似文献   

18.
Calcium ions exhibit unique properties and a universal ability to transmit diverse signals in plant cells under the primary action of hormones, pathogens, light, gravity, and various abiotic stressors. In the last few years, considerable progress has been achieved in deciphering the mechanisms of Ca2+ involvement in the regulation of plant responses. Recent studies revealed the genes encoding Ca2+-permeable channels that conduct Ca2+ currents across the membranes during the transduction of the Ca2+ signal. These proteins comprise the ligand-gated Ca2+-permeable channels activated by cyclic nucleotides (CNGC) and amino acids (glutamate receptor-like channels, GLR), the voltage-gated tonoplast channel (two-pore channel, TPC1), mechanosensitive channels (MSL, MCA, OSCA1), and annexins. The role of Ca2+-ATPase and Ca2+/H+-exchangers in the active extrusion of excess cytoplasmic Ca2+ into the apoplast or cell organelles was examined in detail. The calmodulins (CaM), CaM-like proteins (CML), Ca2+-dependent protein kinases (CDPK), and complexes of calcineurin-B-like proteins (CBL) with CBL-interacting protein kinases (CIPK) were found to produce intricate signaling networks that decode Ca2+ signals and elicit plant responses to external stimuli. This review analyzes the data accumulated over the past decade on the principles of formation and propagation of the calcium signal in plant cells.  相似文献   

19.
Calcium signaling system in plants   总被引:4,自引:0,他引:4  
  相似文献   

20.
Plant calcium pumps, similarly to animal Ca2+ pumps, belong to the superfamily of P-type ATPase comprising also the plasma membrane H+-ATPase of fungi and plants, Na+/K+ ATPase of animals and H+/K+ ATPase of mammalian gastric mucosa. According to their sensitivity to calmodulin the plant Ca2+-ATPases have been divided into two subgroups: type IIA (homologues of animal SERCA) and type IIB (homologues of animal PMCA). Regardless of the similarities in a protein sequence, the plant Ca2+ pumps differ from those in animals in their cellular localization, structure and sensitivity to inhibitors. Genomic investigations revealed multiplicity of plant Ca2+-ATPases; they are present not only in the plasma membranes and ER but also in membranes of most of the cell compartments, such as vacuole, plastids, nucleus or Golgi apparatus. Studies using yeast mutants made possible the functional and biochemical characterization of individual plant Ca2+-ATMPases. Plant calcium pumps play an essential role in signal transduction pathways, they are responsible for the regulation of [Ca2+] in both cytoplasm and endomembrane compartments. These Ca2+-ATPases appear to be involved in plant adaptation to stress conditions, like salinity, chilling or anoxia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号