首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   302篇
  免费   23篇
  国内免费   34篇
  2023年   2篇
  2022年   8篇
  2021年   3篇
  2020年   11篇
  2019年   6篇
  2018年   8篇
  2017年   11篇
  2016年   12篇
  2015年   12篇
  2014年   10篇
  2013年   14篇
  2012年   17篇
  2011年   27篇
  2010年   18篇
  2009年   22篇
  2008年   22篇
  2007年   20篇
  2006年   16篇
  2005年   22篇
  2004年   15篇
  2003年   18篇
  2002年   8篇
  2001年   5篇
  2000年   3篇
  1999年   4篇
  1998年   6篇
  1997年   5篇
  1996年   5篇
  1995年   5篇
  1994年   3篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1990年   3篇
  1988年   1篇
  1986年   1篇
  1984年   3篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1971年   1篇
排序方式: 共有359条查询结果,搜索用时 15 毫秒
1.
Yield of polysaccharides from Phascolosoma esulenta obtained by phosphate buffer extraction through an orthogonal experiment (L9(3)4) were investigated to get the best extraction conditions. The results showed that extraction temperature, ratio of phosphate buffer to raw material, extraction time, and ratio of trypsinase to raw material were the main four variables that influenced the yields of extracts. The highest yield was obtained when extraction temperature, ratio of phosphate buffer to raw material, extraction time and ratio of trypsinase to raw material were 40 °C, 2, 5.5 h and 1.6, respectively. The immunity-stimulating method showed that polysaccharides from P. esulenta could significantly raise liver, spleen and thymus index of mice and enhance Con A-stimulated mouse spleen cells proliferation. These results indicate that polysaccharides from P. esulenta had significantly higher immunity-stimulating activities.  相似文献   
2.
Plant polyphenols are extremely diverse, due to the occurrence of several basic structures, numerous substitutions and, for some groups, of polymers (tannins). Plant polyphenol composition depends on the plant species and organ, with some molecules specific of particular plant families while others are ubiquitous. The polyphenol content is classically assessed by global analysis methods, which lack specificity and accuracy. These methods have been replaced with high performance liquid chromatography (HPLC), that enables accurate determination of individual molecules, provided they can be unambiguously identified and calibration curves can be established. However, HPLC analysis is restricted to simple compounds and difficult to apply in the case of complex extracts. Further difficulties encountered in the case of polymers include irreversible adsorption on the stationary phases. Proanthocyanidin analysis by HPLC after acid-catalysed depolymerisation in the presence of a nucleophile permits to overcome these problems and shows that proanthocyanidins predominate in the polyphenol composition of most plants. Large varietal differences in tannin quantitative and qualitative composition were observed for all plant species studied. Moreover, analysis is usually performed after extraction, which may lead to significant underestimation of the polyphenol content, since a large proportion is not extracted by usual solvents. This may be due to covalent binding to other plant constituents and to non-covalent adsorption on plant solids. Such matrix effect also influences the taste perception of polyphenols and their fate in the digestive tract, from in-mouth interactions with salivary proteins to their metabolism by colon microflora, with potential influence on bioavailability.  相似文献   
3.
本研究采用响应面设计优化超声辅助提取车前总黄酮的最佳条件,然后用此条件提取大车前和平车前总黄酮,并探究大孔树脂纯化对三种车前草总黄酮抗氧化活性的影响。结果表明,在超声温度60℃、乙醇浓度70%的条件下,车前总黄酮最佳提取工艺参数为液料比20:1 m L/g、超声时间80 min、超声功率210 W,车前、大车前和平车前的总黄酮得率分别为5.04%、2.86%和1.22%。无论是纯化前还是纯化后,大车前总黄酮的还原力和对羟基自由基的清除作用最强,平车前最弱;车前总黄酮对DPPH自由基的清除作用最大,平车前最弱。纯化前后的还原力和对DPPH自由基、羟基自由基的清除作用都接近Vc的水平。  相似文献   
4.
为了探讨超临界二氧化碳(supercritical carbon dioxide, SC-CO2)技术与提取物的分级分离在萃取芸香活性成分的应用价值,本研究采用SC-CO2和乙酸乙酯萃取芸香中植物蜡和活性成分,并调查粒径和CO2流量对提取产量的影响。在250 bar、40℃条件下提取,并使第一个分离器冷却到-10℃,可获得较好的提取效率。当粒径较小时,提取过程更快,即内部传质控制该过程。分级分离可选择性去除表皮植物蜡,约占由SC-CO2处理产生的总提取物的77.5%W/W。第二分离器中的获得的提取物中活性化合物可达86.3%W/W。随后采用气相色谱-质谱联用仪(gas chromatography-mass spectrometry, GC-MS)分析表明,乙酸乙酯提取物低于SC-CO2提取物的萃取效率,主要是由于提取物中含有大量的植物蜡。本研究为超临界二氧化碳技术在萃取芸香活性成分方面的提供技术参考。  相似文献   
5.
本研究使用单因素方法考察了无花果(Ficus carica L.)果皮中花青素的最佳提取条件,并考察了7种参数对花青素提取率的影响。参数设置如下:溶剂性质(水,甲醇,乙醇和丙酮)、提取次数(1~3次)、固液比(1/50,1/100,1/150和1/200)、提取时间(60 min,120 min,180 min和240 min)、甲醇浓度(0,20%,40%,60%,80%和100%)、酸类型(盐酸,乙酸,柠檬酸和酒石酸)和酸浓度(0,1%,2%,5%和10%)。使用pH-示差法测量无花果果皮中单体花色素的含量。研究显示,无花果果皮中花青素的最佳提取条件为:溶剂为甲醇溶剂,提取次数为2次,固液比为1/100,提取时间为180 min,甲醇浓度为80%,酸类型为柠檬酸,柠檬酸浓度为5%。该最佳提取条件下的花青素的提取率达到最高(345.62 mg/100g DS)。  相似文献   
6.
为筛选铁皮石斛(Dendrobiumofficinale)花总RNA提取方法,对8种提取方法进行了比较研究,包括改良CTAB-LiCl法(M1)、改良CTAB-异丙醇法(M2)、改良SDS-LiCl法(M3)、改良SDS-异丙醇法(M4)、多糖多酚植物RNA提取试剂盒法(M5)、柱式植物RNAout 2.0试剂盒法(M6)、RNAprep Pure多糖多酚植物总RNA提取试剂盒法(M7)和Biospin多糖多酚植物总RNA提取试剂盒法(M8)。结果表明,以M4和M5提取的总RNA带型清晰,完整性好,A260 nm/A280 nm为1.8~2.0,A260 nm/A230 nm大于2.0,RNA产率分别为(159.45±1.45)和(170.84±3.53)μg/g。利用M4、M5提取霍山石斛、金钗石斛、鼓槌石斛和美花石斛花的总RNA,样品的完整性、浓度和纯度均符合质量要求。以M4、M5提取的铁皮石斛总RNA为模板,扩增Actin基因片段,扩增产物大小与预期一致且条带单一。这说明M4、M5方法操作简便,结果重复性好,能够较好地提取石斛属植物花的总RNA。  相似文献   
7.
Reverse micellar extraction of lipase using cationic surfactant cetyltrimethylammonium bromide (CTAB) was investigated. The effect of various process parameters on both forward and backward extraction of lipase from crude extract was studied to optimize its yield and purity. Forward extraction of lipase was found to be maximum using Tris buffer at pH 9.0 containing 0.10 M NaCl in aqueous phase and 0.20 M CTAB in organic phase consisting of isooctane, butanol and hexanol. In case of backward extraction, lipase was extracted from the organic phase to a fresh aqueous phase in 0.05 M potassium phosphate buffer (pH 7.0) containing 1.0 M KCl. The activity recovery, extraction efficiency and purification factor of lipase were found to be 82.72%, 40.27% and 4.09-fold, respectively. The studies also indicated that the organic phase recovered after back extraction could be reused for the extraction of lipase from crude extract.  相似文献   
8.
Human aorta has been shown to possess multiple forms of N-Acetyl-6-D-hexosaminidase (β-2-acetamido-2-deoxy-D-glucoside-acetamido-deoxyglucohydro-lase, EC 3.2, 1.30). The enzyme was separable, by gel electrophoresis, into 2 enzymatically active bands representing A and B forms. By gel electro-focussing, A and B forms were further subdivided into at least 5 and 8 bands, respectively. The B form consisted of 4 bands (B1) and 4 bands (B2), which were not inactivated at 50° for 3 hr. (at pH 4.4) in the presence of serum; whereas, the 5 bands found in A form were completely inactivated. All forms of the enzyme were active towards naphthol-AS-BI-N-acetyl-β-D-glucosaminide and the corresponding galactosaminide (about one-eighth of the hydrolysis rate of the former), suggesting each single enzyme acts on both substrates. The N-acetyl-hexosaminidases of bull epididymis, by comparison, were also found to be active towards both substrates and to possess 13 bands having pis more alkaline than those of the B form of the human enzyme, By heat inactivation we found that the aortic enzyme consisted of 51% of A and 49% of B (B1 + B2 .). Neuraminidase had no effect on either form of the aortic preparation. Both forms were partially purified and separated by conventional methods. They required BSA for their maximal activity; the A form being more dependent BSA than the B form, With PNP-N-acetyl-β-D-glucosaminide and the corresponding galactosaminide, Km of 1.04 mH and 0.54 mM, respectively, for A form and of 1.74 and 1.48 mM, respectively, for B form were obtained. While the purified B form was stable and did not transform into other species, the purified A form gradually transformed into B form as well as into other new forms during storage at -20°.  相似文献   
9.
Quantifying and optimizing the polyphenol content of Phyllanthus maderaspatensis was accomplished using a single-solvent HPTLC system. Analyzing hydroalcoholic extracts for kaempferol, rutin, ellagic acid, quercetin, catechin, and gallic acid, we simultaneously quantified and optimized their concentration. In the experiment, the methanol to water ratio (%), temperature (°C), and time of extraction (min) were all optimized using a Box-Behnken statistical design. Kaempferol, rutin, ellagic acid, quercetin, catechin, and gallic acid were among the dependent variables analyzed. In the HPTLC separation, silica gel 60F254 plates were used, and toluene, ethyl acetate, and formic acid (5:4:1) made up the mobile phase. For kaempferol, rutin, ellagic acid, quercetin, catechin, and gallic acid, densitometric measurements were carried out using the absorbance mode at 254 nm. Hydroalcoholic extract of P. maderaspatensis contains rutin (0.344), catechin (2.62), gallic acid (0.93), ellagic acid (0.172), quercetin (0.0108) and kaempferol (0.06). Further, it may be affected by more than one factor at a time, resulting in a varying degree of reaction. A negative correlation was found between X1 (extraction time (min)) and X2 (temperature), as well as X1 and X3 (solvent ratios). Taking these characteristics into consideration, the method outlined here is a validated HPTLC method for measuring kaempferol, rutin, ellagic acid, quercetin, catechin, and gallic acid.  相似文献   
10.
Diabetes is a worldwide public health disease. Currently, the most effective way to treat diabetes is to mitigate postprandial hyperglycemia by inhibiting carbohydrate hydrolysis enzymes in the digestive system. Plant extracts are rich in bioactive compounds, which can be used in diabetes treatment. This study aims to evaluate the polyphenols content in ethanolic extracts of avocado fruit and leaves (Persea americana Mill.). Additionally, their antioxidant activity using DPPH, while the inhibition ability of α-amylase was examined by reacting different amounts of the extracts with α-amylase compared to acarbose as standard inhibitor. The active compounds were detected in the extracts by LC/MS. The obtained results showed that the leaf extract recorded a significant content of total phenolic compounds compared to the fruit extract (178.95 and 145.7 mg GAE /g dry weight, respectively). The total flavonoid values ??ranged from 32.5 to 70.08 mg QE/g dry weight of fruit and leaves extracts, respectively. Twenty-six phytogenic compounds were detected in leaf and fruit extract by LC/MS. These compounds belong to fatty acids, sterols, triterpenes, phenolic acids, and flavonoids. The antioxidant activity of the extracts is due to the exist of phytogenic compounds, i.e., polyphenols and flavonoids. The antioxidant activity increased in a concentration dependant manner. Avocado fruit extract (1000 µg/mL) scavenged 95% of DPP? while leaf extract rummaged 91.03% of free radicals compared with Vit C and BHT. Additionally, higher α-amylase inhibitory activity was observed in fruit extract than the leaf extract, where the fruit and leaf extract (1000 μg/ml) inhibited the enzyme by 92.13% and 88.95%, respectively. The obtained results showed that the ethanolic extracts of avocado could have a significant impact on human health due to their high content of polyphenols.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号