首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   106篇
  免费   5篇
  2023年   1篇
  2022年   3篇
  2021年   4篇
  2020年   2篇
  2019年   5篇
  2018年   11篇
  2017年   10篇
  2016年   14篇
  2015年   5篇
  2014年   3篇
  2013年   7篇
  2012年   7篇
  2011年   4篇
  2010年   4篇
  2009年   5篇
  2008年   4篇
  2007年   2篇
  2006年   7篇
  2005年   5篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
排序方式: 共有111条查询结果,搜索用时 31 毫秒
1.

Ischemic infarctions occur under the influence of genetic and environmental factors. In our study, the role of ischemia-modified albumin and thiol balance, which are new markers in determining oxidative damage together with MTHFR gene polymorphisms and homocysteine levels, in the development of SBI was investigated. White matter lesions in the magnetic resonance imaging (MRI) results of the patients were evaluated according to the Fazekas scale and divided into groups (Grade 0, 1, 2, and 3). Homocysteine, folate, B12, IMA, total thiol, and native thiol were measured by biochemical methods. The polymorphisms in MTHFR genes were investigated by the RT-PCR method. According to our results, a significant difference was found between the groups in age, homocysteine, folate, IMA, total thiol, and native thiol parameters (p?<?0.05). When we compared the groups in terms of genotypes of the C677T gene, we found a significant difference in TT genotype between grades 0/3 and 1/3 (p?<?0.05). We determined that homocysteine and IMA levels increased and folate levels decreased in CC/TT and CT/TT genotypes in the C677T gene (p?<?0.05). Considering our results, the observation of homocysteine and IMA changes at the genotype level of the MTHFR C677T gene and between the groups, and the deterioration of thiol balance between the groups suggested that these markers can be used in the diagnosis of silent brain infarction.

  相似文献   
2.
Pazopanib is a tyrosine kinase inhibitor that is generally used for the treatment of metastatic renal cell cancer and advanced soft tissue sarcoma. It can cause various degrees of hepatotoxicity. Our study aimed to investigate the effect of taxifolin on pazopanib-induced liver toxicity. A total of 18 rats were divided into three groups: the pazopanib (PP), pazopanib plus taxifolin (TPP), and control (C) group. Taxifolin was administered to the TPP (n=6) group with a dose of 50 mg/kg. Distilled water was orally admnistered to the C (n=6) and PP (n=6) groups as a solvent. Subsequently, pazopanib 200 mg/kg was administered to the TPP and PP groups via the stomach. This procedure was repeated once a day for four weeks. Then, all rats were sacrificed, and their livers were removed. Malondialdehyde (MDA), total glutathione (tGSH), total oxidant status (TOS), and total antioxidant status (TAS) levels were evaluated. MDA and TOS levels were higher in the PP group compared with the levels of the other parameters (P<0.001). tGSH and TAS levels were lower in the PP group than in the TPP and C groups (P<0.001), and the aspartate aminotransferase (AST), alanine aminotransferase (ALT), and lactate dehydrogenase (LDH) levels were higher. Furthermore, liver tissue damage, including hemorrhage, hydropic degeneration, and necrosis was observed in the PP group. Administration of taxifolin before pazopanib significantly improved degenerative changes. Our study demonstrated that the administration of taxifolin is significantly effective in preventing pazopanib-induced hepatotoxicity in rats.  相似文献   
3.
4-Amino-N-(4-sulfamoylphenyl)benzamide was synthesized by reduction of 4-nitro-N-(4-sulfamoylphenyl)benzamide and used to synthesize novel acridine sulfonamide compounds, by a coupling reaction with cyclic-1,3-diketones and aromatic aldehydes. The new compounds were investigated as inhibitors of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1), and more precisely the cytosolic isoforms hCA I, II and VII. hCA I was inhibited in the micromolar range by the new compounds (KIs of 0.16–9.64 μM) whereas hCA II and VII showed higher affinity for these compounds, with KIs in the range of 15–96 nM for hCA II, and of 4–498 nM for hCA VII. The structure–activity relationships for the inhibition of these isoforms with the acridine–sulfonamides reported here were also elucidated.  相似文献   
4.
A series of novel sulfamides incorporating the dopamine scaffold were synthesized. Reaction of amines and tert-butyl-alcohol/benzyl alcohol in the presence of chlorosulfonyl isocyanate (CSI) afforded sulfamoyl carbamates, which were converted to the title compounds by treatment with trifluoroacetic acid or by palladium-catalyzed hydrogenolysis. Inhibition of six α-carbonic anhydrases (CAs, EC 4.2.1.1), that is, CA I, CA II, CA VA, CA IX, CA XII and CA XIV, and two β-CAs from Candida glabrata (CgCA) and Mycobacterium tuberculosis (Rv3588) with these sulfamides was investigated. All CA isozymes were inhibited in the low micromolar to nanomolar range by the dopamine sulfamide analogues. Kis were in the range of 0.061–1.822 μM for CA I, 1.47–2.94 nM for CA II, 2.25–3.34 μM for CA VA, 0.041–0.37 μM for CA IX, 0.021–1.52 μM for CA XII, 0.007–0.219 μM for CA XIV, 0.35–5.31 μM for CgCA and 0.465–4.29 μM for Rv3588. The synthesized sulfamides may lead to inhibitors targeting medicinally relevant CA isoforms with potential applications as antiepileptic, antiobesity antitumor agents or anti-infective.  相似文献   
5.
6.
7.
N-Protected amino acids (Gly, Ala and Phe) were reacted with amino substituted coumarin and quinolinone derivatives, leading to the corresponding N-protected amino acid–coumarin/quinolinone conjugates. The carbonic anhydrase (CA, EC 4.2.1.1) inhibitory activity of the new compounds was assessed against various human (h) isoforms, such as hCA I, hCA II, hCA IV and hCA XII. The quinolinone conjugates were inactive as enzyme inhibitors, whereas the coumarins were ineffective hCA I/II inhibitors (KIs?>?50?μM) but were submicromolar hCA IV and XII inhibitors, with inhibition constants ranging between 92?nM and 1.19?μM for hCA IV, and between 0.11 and 0.79?μM for hCA XII. These coumarin derivatives, as many others reported earlier, thus show an interesting selective inhibitory profile for the membrane-bound over the cytosolic CA isoforms.  相似文献   
8.
New phenolic mono and bis Mannich bases incorporating benzimidazole, such as 2-(aminomethyl)-4-(1H-benzimidazol-2-yl)phenol and 2,6-bis(aminomethyl)-4-(1H-benzimidazol-2-yl)phenol were synthesized starting from 4-(1H-benzimidazol-2-yl)phenol. Amines used for the synthesis included dimethylamine, pyrrolidine, piperidine, N-methylpiperazine and morpholine. The CA inhibitory properties of these compounds were tested on the human carbonic anhydrase (CA, EC 4.2.1.1) isoforms hCA I and hCA II. These new compounds, as many phenols show moderate CA inhibitory properties.  相似文献   
9.
10.
Interleukin-1 (IL-1) receptor-associated kinase (IRAK) is phosphorylated after it is recruited to the receptor, subsequently ubiquitinated, and eventually degraded upon IL-1 stimulation. Although a point mutation changing lysine 134 to arginine (K134R) in IRAK abolished IL-1-induced IRAK ubiquitination and degradation, mutations of serines and threonines adjacent to lysine 134 to alanines ((S/T)A (131-144)) reduced IL-1-induced IRAK phosphorylation and abolished IRAK ubiquitination. Through the study of these IRAK modification mutants, we uncovered two parallel IL-1-mediated signaling pathways for NFkappaB activation, TAK1-dependent and MEKK3-dependent, respectively. These two pathways bifurcate at the level of IRAK modification. The TAK1-dependent pathway leads to IKKalpha/beta phosphorylation and IKKbeta activation, resulting in classical NFkappaB activation through IkappaBalpha phosphorylation and degradation. The TAK1-independent MEKK3-dependent pathway involves IKKgamma phosphorylation and IKKalpha activation, resulting in NFkappaB activation through IkappaBalpha phosphorylation and subsequent dissociation from NFkappaB but without IkappaBalpha degradation. These results provide significant insight to our further understanding of NFkappaB activation pathways.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号