首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Phenolic mono Mannich bases [2-[4-hydroxy-3-(aminomethyl)benzylidene]-2,3-dihydro-1H-inden-1-one (815)] and bis Mannich bases [2-[4-hydroxy-3,5-bis(aminomethyl)benzylidene]-2, 3-dihydro-1H-inden-1-one (27)] were synthesized starting from 2-(4-hydroxybenzylidene)-2, 3-dihydro-inden-1-one (1). This study was designed in order to investigate the carbonic anhydrase (CA, EC 4.2.1.1) inhibitory properties of a library of compounds incorporating the phenol functional group. All prepared compounds showed a low inhibition percentages on both human (h) isoforms hCA I and hCA II compared to the reference sulfonamide acetazolamide. Mannich bases 215 had lower inhibition percentages than the compound 1 on hCA I and hCA II, except compound 14, which is a Mannich base derivative of dipropylamine, which had a similar inhibitory power as compound 1 on hCA II. All compounds synthesized 115 were 1.3–1.9 times more effective on hCA II comparing with the effectivenes of the compounds on hCA I.  相似文献   

2.
New coumaryl-carboxamide derivatives with the thiourea moiety as a linker between the alkyl chains and/or the heterocycle nucleus were synthesized and their inhibitory activity against the human carbonic anhydrase (hCA) isoforms hCA I, II, VII and IX were evaluated. While the hCA I, II and VII isoforms were not inhibited by the investigated compounds, the tumour-associated isoform hCA IX was inhibited in the high nanomolar range. 2-Oxo-N-((2-(pyrrolidin-1-yl)ethyl)carbamothioyl)-2H-chromene-3-carboxamide (e11) exhibited a selective inhibitory action against hCA IX with the Ki of 107.9?nM. In order to better understand the inhibitory profiles of studied molecules, multiscale molecular modeling approaches were used. Different molecular docking algorithms were used to investigate binding poses and predicted binding energies of studied compounds at the active sites of the CA I, II, VII and IX isoforms.  相似文献   

3.
Abstract

A series of polymethoxylated-pyrazoline benzene sulfonamides were synthesized, investigated for their cytotoxic activities on tumor and non-tumor cell lines and inhibitory effects on carbonic anhydrase isoenzymes (hCA I and hCA II). Although tumor selectivity (TS) of the compounds were less than the reference compounds 5-Fluorouracil and Melphalan, trimethoxy derivatives 4, 5, and 6 were more selective than dimethoxy derivatives 2 and 3 as judged by the cytotoxicity assay with the cells both types originated from the gingival tissue. The compound 6 (4-[3-(4-methoxyphenyl)-5-(3,4,5-trimethoxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl] benzene sulfonamide) showed the highest TS values and can be considered as a lead molecule of the series for further investigations. All compounds synthesized showed superior CA inhibitory activity than the reference compound acetazolamide on hCA I, and II isoenzymes, with inhibition constants in the range of 26.5–55.5?nM against hCA I and of 18.9–28.8?nM against hCA II, respectively.  相似文献   

4.
The effects of isatin Mannich bases incorporating (1-[piperidin-1-yl (P1)/morpholin-4-yl (P2)/N-methylpiperazin-1-yl (P3)]methyl)-1H-indole-2,3-dione) moieties against human (h) carbonic anhydrase (CA, EC 4.2.1.1) isoenzymes hCA I and hCA II, acetylcholinesterase (AChE), and butyrylcholinesterase (BChE) enzymes were evaluated. P1P3 demonstrated impressive inhibition profiles against AChE and BChE and also inhibited both CAs at nanomolar level. These inhibitory effects were more powerful in all cases than the reference compounds used for all these enzymes. This study suggests that isatin Mannich bases P1–P3 are good candidate compounds especially for the development of new cholinesterase inhibitors since they were 2.25.9 times better inhibitors than clinically used drug Tacrine.  相似文献   

5.
Inhibition of carbonic anhydrases (CAs, EC 4.2.1.1) has clinical importance for the treatment of several diseases. They participate in crucial regulatory mechanisms for balancing intracellular and extracellular pH of the cells. Among CA isoforms, selective inhibition of hCA IX has been linked to decreasing of cell growth for both primary tumors and metastases. The discovery of novel CA inhibitors as anticancer drug candidates is a current topic in medicinal chemistry. 1,3,5-Trisubstituted pyrazoles carrying benzenesulfonamide were evaluated against physiologically abundant cytosolic hCA I and hCA II and trans-membrane, tumor-associated hCA IX isoforms by a stopped-flow CO2 hydrase method. Their in vitro cytotoxicities were screened against human oral squamous cell carcinoma (OSCC) cell lines (HSC-2) and human mesenchymal normal oral cells (HGF) via 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) test. Compounds 6, 8, 9, 11, and 12 showed low nanomolar hCA II inhibitory potency with Ki < 10 nM, whereas compounds 9 and 12 displayed Ki < 10 nM against hCA IX isoenzyme when compared with reference Acetazolamide (AZA). Compound 9, 4-(3-(hydrazinecarbonyl)-5-(4-nitrophenyl)-1H-pyrazol-1-yl)benzenesulfonamide, can be considered as the most selective hCA IX inhibitor over off-target cytosolic isoenzymes hCA I and hCA II with the lowest Ki value of 2.3 nM and selectivity ratios of 3217 (hCA I/hCA IX) and 3.9 (hCA II/hCA IX). Isoform selectivity profiles were also discussed using in silico modelling. Cytotoxicity results pointed out that compounds 5 (CC50 = 37.7 μM) and 11 (CC50 = 58.1 μM) can be considered as lead cytotoxic compounds since they were more cytotoxic than 5-Fluorouracil (5-FU) and Methotrexate (MTX).  相似文献   

6.
New secondary benzenesulphonamide-substituted coumarylthiazole derivatives were synthesized and their inhibitory effects on purified carbonic anhydrase I and II were evaluated using CO2 as a substrate. The result showed that all the synthesized compounds exhibited inhibitory activity on both hCA I and hCA II with N-(4-(2-oxo-2H-chromen-3-yl)thiazol-2-yl)naphthalene-2-sulphonamide (5f, IC50 value of 5.63 and 8.48?µM, against hCA I and hCA II, respectively) as the strongest inhibitor revealed from this study. Structure–activity relationship revealed that the inhibitory activity of the synthesized compounds is related to the type of the halogen and bulky substituent on the phenyl ring. In addition, the cupric reducing antioxidant capacities (CUPRAC) and ABTS cation radical scavenging abilities of the synthesized compounds were assayed. 4-methoxy-N-(4-(2-oxo-2H-chromen-3-yl)thiazol-2-yl)benzenesulphonamide (5e) exhibited the strongest ABTS and CUPRAC activity with IC50 value of 48.83?µM and A0.50 value of 23.29?µM, respectively.  相似文献   

7.
Abstract

A series of compounds incorporating 3-(3-(2/3/4-substituted phenyl)triaz-1-en-1-yl) benzenesulfonamide moieties were synthesised and their chemical structure was confirmed by physico-chemical methods. Carbonic anhydrase (CA, EC 4.2.1.1) inhibitory effects of the compounds were evaluated against human isoforms hCA I and II. KI values of these sulphonamides were in the range of 21?±?4–72?±?2?nM towards hCA I and in the range of 16?±?6–40?±?2?nM against hCA II. The 4-fluoro substituted derivative might be considered as an interesting lead due to its effective inhibitory action against both hCA I and hCA II (KIs of 21?nM), a profile rarely seen among other sulphonamide CA inhibitors, making it of interest in systems where the activity of the two cytosolic isoforms is dysregulated.  相似文献   

8.
A practical and transition metal-free one-pot domino synthesis of diversified (1,3,4-oxadiazol-2-yl)anilines has been developed employing isatins and hydrazides as the starting materials, in the presence of molecular iodine. The prominent feature of this domino process involves consecutive condensation, hydrolytic ring cleavage, and an intramolecular decarboxylation, in a one-pot process that leads to the oxidative formation of a C–O bond. Fluorescence properties of some of the representative molecules obtained in this way were studied. The synthesised 2-(1,3,4-oxadiazolo-2-yl)aniline-benzene sulphonamides (8ao) were screened for their carbonic anhydrase (CA, EC 4.2.1.1) inhibitory activity. Most of the compounds exhibited low micromolar to nanomolar activity against human (h) isoforms hCA I, hCA II, hCA IV, and XII, with some compounds displaying selective CA inhibitory activity towards hCA II with KIs of 6.4–17.6?nM.  相似文献   

9.
In this study, 4-[3-(4-hydroxyphenyl)-5-aryl-4,5-dihydro-pyrazol-1-yl]benzenesulfonamide (19) types compounds were synthesized and their chemical structures were confirmed by 1H NMR, 13C NMR and HRMS spectra. Cytotoxic and carbonic anhydrase (CA) inhibitory effects of the compounds were investigated. Cytotoxicity experiments pointed out that compound 4, (4-[5-(4-chlorophenyl)-3-(4-hydroxyphenyl)-4,5-dihydro-pyrazol-1-yl]benzenesulfonamide), exerting the highest tumor selectivity (TS) and potency selectivity expression (PSE) values, can be considered as a lead compound of this study in terms of development of novel anticancer agents. All synthesized sulfonamides showed a good inhibition profile on hCA IX and XII in the range of 53.5–923?nM and 6.2–95?nM, respectively. These compounds were 2.5–13.4 times more selective for the inhibition of hCA XII versus hCA IX, except compound 2 which had similar inhibitory action towards both isoenzymes.  相似文献   

10.
In this study, 4-[5-(4-hydroxyphenyl)-3-aryl-4,5-dihydro-1H-pyrazol-1-yl]benzenesulfonamide derivatives (8-14) were synthesized for the first time by microwave irradiation and their chemical structures were confirmed by 1H NMR, 13C NMR and HRMS. Cytotoxic activities and inhibitory effects on carbonic anhydrase I and II isoenzymes of the compounds were investigated. The compounds 9 (PSE?=?4.2), 12 (PSE?=?4.1) and 13 (PSE?=?3.9) with the highest potency selectivity expression (PSE) values in cytotoxicity experiments and the compounds 13 (Ki?=?3.73?±?0.91?nM toward hCA I) and 14 (Ki?=?3.85?±?0.57?nM toward hCA II) with the lowest Ki values in CA inhibition studies can be considered as leader compounds for further studies.  相似文献   

11.
In this study, new Mannich bases, 2-(4-hydroxy-3-methoxy-5-((substitutedpiperazin-1-yl)methyl)benzylidene)-2,3-dihydro-1H-inden-1-one (1, 2, 4, 5, 8), 2-(3-((substituted)piperazin-1-yl)methyl)-4-hydroxy-5-methoxybenzylidene)-2,3-dihydro-1H-inden-1-one (3, 6, 7) were synthesized with the reaction of vanilin derived chalcone compound (2-(4-hydroxy-3-methoxybenzylidene)indan-1-one), paraformaldehyde and suitable amine in 1:1.2:1 mol ratios. Amine part was changed as N-methylpiperazine (1), N-phenylpiperazine (2), N-benzylpiperazine (3), 1-(2-methoxyphenyl)piperazine (4), 1-(3-methoxyphenyl)piperazine (5), 1-(2-fluorophenyl)piperazine (6), 1-(4-fluorophenyl)piperazine (7), and 1-(3-trifluoromethyl)phenyl piperazine (8). Compounds were evaluated in terms of cytotoxic/anticancer and CA inhibitory effects. According to the results obtained, the compounds 2 and 8 had the highest potency selectivity expression (PSE) values (60.6 and 19.2, respectively). On the other hand, the compounds 3 (Ki = 209.6 ± 70.2 pM) and 5 (Ki = 342.66 ± 63.72 pM) had the lowest Ki values in CA inhibition experiments towards hCA I and hCA II, respectively.In conclusion, the compounds 2 (with cytotoxic/anticancer activity), 3 (with hCA I inhibiting activity) and 5 (with hCA II inhibiting activity) can be leading compounds of the study for further designs and evaluations.  相似文献   

12.
A newly series of water-soluble 1-alkyl-3-(4-methyl-7, 8-dihydroxy-2H-chromen-2-one) benzimidazolium chloride salts (3a-j) were synthesized and their inhibitory effects on the activity of purified human carbonic anhydrase (hCA) I and II were evaluated. hCA I and II from human erythrocytes were purified by a simple one step procedure by using Sepharose 4B-L-tyrosine-sulphanilamide affinity column. The result showed that all the synthesized compounds were inhibited the CA isoenzymes activity. Among them, 3g and 3j were found to be most active (IC50 = 22.09 µM and 20.33 µM) for hCA I and hCA II, respectively.  相似文献   

13.
Here we propose a novel one-pot synthesis of new tosyl-pyrrole derivatives. By means of the new developed method, pyrrole derivatives were synthesized at room temperature in a single step, and a useful method is proposed for the synthesis of similar compounds. Moreover, inhibitions of two human cytosolic carbonic anhydrase (hCA, EC 4.2.1.1) isozymes I and II by 1-tosyl-pyrrole and 1-tosyl-pyrrol-2-on derivatives were investigated. 1-Tosyl-pyrrole, 1-tosyl-1H-pyrrol-2(5H)-one, 5-hydroxy-1-tosyl-1H-pyrrol-2(5H)-one and 5-oxo-1-tosyl-2,5-dihydro-1H-pyrrol-2-yl acetate showed inhibitory action with Ki values in the range of 14.6–42.4 μM for hCA I and 0.53–37.5 μM for hCA II, respectively. All pyrrole derivatives were competitive inhibitors with 4-nitrophenylacetate as substrate. Some new synthesized pyrrole derivatives showed very effective hCA II inhibitory effects, in the same range as the clinically used sulfonamide acetazolamide, and might be used as leads for generating enzyme inhibitors targeting other CA isoforms.  相似文献   

14.
New mono Mannich bases, (2-(4-hydroxy-3-((4-substituephenylpiperazin-1-yl)methyl)benzylidene)-2,3-dihydro-1H-inden-1-one), were prepared to evaluate their cytotoxic/anticancer properties and also their inhibitory effects on human carbonic anhydrase I and II isoenzymes (hCA I and II). Amine part was changed as [N-phenylpiperazine (1), N-benzylpiperazine (2), 1-(2-fluorophenyl)piperazine (3), 1-(4-fluorophenyl)piperazine (4), 1-(2-methoxyphenyl)piperazine (5)]. The structure of the synthesized compounds was characterized by 1H NMR, 13C NMR and HRMS spectra. Cytotoxicity results of the series pointed out that the compound 4 had the highest tumor selectivity value (TS: 59.4) possibly by inducing necrotic cell death in series. Additionally, all compounds synthesized showed a good inhibition profile towards hCA I and II isoenzymes with the Ki values between 29.6 and 58.4 nM and 38.1–69.7 nM, respectively. These values were lower than the reference compound AZA. However, it seems that the compounds 4 and 2 can be considered as lead compounds of CA studies with the lowest Ki values in series for further designs.  相似文献   

15.
A series of 2-(hydrazinocarbonyl)-3-aryl-1H-indole-5-sulfonamides possessing various 2-, 3- or 4- substituted phenyl groups with methyl-, halogeno- and methoxy-functionalities, or a perfluorophenyl moiety, has been derivatized by reaction with 2,4,6-trimethylpyrylium perchlorate. The new sulfonamides were evaluated as inhibitors of four mammalian carbonic anhydrase (CA, EC 4.2.1.1) isoforms, that is, CA I, II (cytosolic), CA IX and XII (transmembrane, tumor-associated forms). Excellent inhibitory activity was observed against hCA IX with most of these sulfonamides, and against hCA XII with some of the new compounds. These compounds were generally less effective inhibitors of hCA II. Being membrane impermeant, these positively-charged sulfonamides are interesting candidates for targeting the tumor-associated CA IX and XII, as possible diagnostic tools or therapeutic agents.  相似文献   

16.
A series of novel regioisomeric hybrids of quinazoline/benzimidazole viz. (3-allyl-2-methyl-3H-benzimidazol-5-yl)-(2-substituted-quinazolin-4-yl)-amine and (1-allyl-2-methyl-1H-benzimidazol-5-yl)-(2-substituted-quinazolin-4-yl)-amine of biological interest were synthesized. All the synthesized compounds were well characterized by 1H and 13C NMR as well as mass spectroscopy. The newly synthesized compounds were screened for in vitro antitumor activities against 60 tumor cell lines panel assay. A significant inhibition for cancer cells were observed with compound 9 and also more active against known drug 5-fluorouracil (5-FU) in some tumor cell lines. Compound 9 displayed appreciable anticancer activity against leukemia, colon, melanoma, renal and breast cancer cell lines.  相似文献   

17.
A series of new 4-(3-(4-substitutedphenyl)-3a,4-dihydro-3H-indeno[1,2-c]pyrazol-2-yl) benzenesulfonamides (712) was synthesized starting from 2-(4-substitutedbenzylidene)-2,3-dihydro-1H-inden-1-one (16) and 4-hydrazinobenzenesulfonamide. The substituted benzaldehydes from which the key intermediate was prepared by introducing 2- or 4-substituents such as fluorine, hydroxy, methoxy, or the 3,4,5-trimethoxy moieties. The compounds were tested for their cytotoxicity, tumor-specificity and potential as carbonic anhydrase (CA, EC 4.2.1.1) inhibitors. The 3,4,5-trimethoxy and the 4-hydroxy derivatives showed interesting cytotoxic activities, which may be crucial for further anti-tumor activity studies, whereas some of these sulfonamides strongly inhibited both human (h) cytosolic isoforms hCA I and II.  相似文献   

18.
Mannich bases of thymol were synthesized. The aminomethylation reaction was realised in the ortho position of the phenol for compounds 2 (dipropylamine), 3 (benzylamine), and 4 (dibenzylamine) while it was from para position for 1 (dimethylamine), 5 (piperidine), 6 (morpholine) and 7 (N-methylpiperazine). The carbonic anhydrase (CA, EC 4.2.1.1) inhibitory effects of the compounds were asssessed against hCA I and hCA II. All compounds moderately inhibited hCA I and hCA II. The cytotoxicity of the compounds against four human oral squamous cell carcinoma cell lines were compared those against three normal oral cells. Tumor specificity values were about 2 or slightly more for the compounds 2, 3, 4, 5 and 6. Compound 2 showed cytostatic activity against OSCC cell lines at 16 to 32-fold lower concentrations as compared with normal cells. This suggests that compound 2 can be considered as cytotoxicity enhancing drug candidate for further investigations.  相似文献   

19.
Abstract

A series of amino acid–sulphonamide conjugates was prepared through benzotriazole mediated coupling reactions and characterised by 1H-NMR, 13C-NMR, MS, and FTIR spectroscopic techniques as well as elemental analysis. The carbonic anhydrase (CA, EC 4.2.1.1) inhibitory activity of the new compounds was determined against four human (h) isoforms, hCA I, hCA II, hCA VA, and hCA XII. Most of the synthesised compounds showed effective in vitro CA inhibitory properties. The new amino acid–sulphonamide conjugates showed potent inhibitory activity against hCA II, some of them at subnanomolar levels, exhibiting more effective inhibitory activity compared to the standard drug acetazolamide. Some of these sulphonamides were also found to be effective inhibitors of hCA I, hCA VA, and hCA XII, with activity from the low to high nanomolar range.  相似文献   

20.
Coumarin and heterocyclic compounds incorporating urea have clinical applications as antiepileptics, diuretics, and antiglaucoma agents due to their carbonic anhydrase inhibitory properties. We investigated inhibition of carbonic anhydrase I and II with a series of coumarylthiazole derivatives containing urea/thiourea groups. All the investigated compounds exhibited inhibitory activity on both hCA I and hCA II, with 1-(3-chlorophenyl)-3-(4-(2-oxo-2H-chromen-3-yl)thiazol-2-yl)urea being the strongest inhibitor. Structure–activity relationship study showed that most of urea derivatives were more inhibiting for hCA I and hCA II than thiourea derivatives. The electron-withdrawing groups at the phenyl ring increased the inhibitory activity compared to electron-donating groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号