首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30241篇
  免费   2778篇
  国内免费   2799篇
  2023年   281篇
  2022年   358篇
  2021年   1113篇
  2020年   876篇
  2019年   1037篇
  2018年   1045篇
  2017年   866篇
  2016年   1135篇
  2015年   1798篇
  2014年   2109篇
  2013年   2279篇
  2012年   2840篇
  2011年   2439篇
  2010年   1673篇
  2009年   1539篇
  2008年   1884篇
  2007年   1667篇
  2006年   1510篇
  2005年   1371篇
  2004年   1223篇
  2003年   1124篇
  2002年   951篇
  2001年   700篇
  2000年   589篇
  1999年   531篇
  1998年   338篇
  1997年   289篇
  1996年   269篇
  1995年   228篇
  1994年   196篇
  1993年   152篇
  1992年   200篇
  1991年   158篇
  1990年   139篇
  1989年   122篇
  1988年   98篇
  1987年   94篇
  1986年   75篇
  1985年   63篇
  1984年   51篇
  1983年   49篇
  1982年   31篇
  1981年   25篇
  1979年   24篇
  1978年   25篇
  1977年   18篇
  1976年   15篇
  1974年   18篇
  1973年   15篇
  1971年   16篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
There is a growing interest in understanding the influence of plant traits on their ability to spread in non-native regions. Many studies addressing this issue have been based on relatively small areas or restricted taxonomic groups. Here, we analyse a large data base involving 1567 plant species introduced between Eastern Asia and North America or from elsewhere to both regions. We related the extent of species distributions in each region to growth form and the distinction between upland and wetland habitats. We identified significant relationships between geographical distribution and plant traits in both native and exotic ranges as well as regional differences in the relationships. Range size was larger for herbaceous graminoids and forbs, especially annuals compared to perennials, than for woody species, and range size also was larger for plants of wetland compared to upland habitats. Distributions were more extensive in North America than in Eastern Asia, although native plants from both regions had broader distributions than non-natives, with exotics from elsewhere intermediate. Growth form and environment explained more of the variance in distribution of plants in North America than in Eastern Asia. The influence of growth form and habitat on distribution suggests that these traits might be related to tolerance of ecological conditions. In addition, the smaller extents of species in non-native compared to native areas suggest roles for dispersal limitation and adaptation to region-specific ecological conditions in determining distribution.  相似文献   
3.
4.
BRUCE is implicated in the regulation of DNA double-strand break response to preserve genome stability. It acts as a scaffold to tether USP8 and BRIT1, together they form a nuclear BRUCE-USP8-BRIT1 complex, where BRUCE holds K63-ubiquitinated BRIT1 from access to DSB in unstressed cells. Following DSB induction, BRUCE promotes USP8 mediated deubiquitination of BRIT1, a prerequisite for BRIT1 to be released from the complex and recruited to DSB by binding to γ-H2AX. BRUCE contains UBC and BIR domains, but neither is required for the scaffolding function of BRUCE mentioned above. Therefore, it remains to be determined whether they are required for BRUCE in DSB response. Here we show that the UBC domain, not the BIR domain, is required for BRUCE to promote DNA repair at a step post the formation of BRUCE-USP8-BRIT1 complex. Mutation or deletion of the BRUCE UBC domain did not disrupt the BRUCE-USP8-BRIT1 complex, but impaired deubiquitination and consequent recruitment of BRIT1 to DSB. This leads to impaired chromatin relaxation, decreased accumulation of MDC1, NBS1, pATM and RAD51 at DSB, and compromised homologous recombination repair of DNA DSB. These results demonstrate that in addition to the scaffolding function in complex formation, BRUCE has an E3 ligase function to promote BRIT1 deubiquitination by USP8 leading to accumulation of BRIT1 at DNA double-strand break. These data support a crucial role for BRUCE UBC activity in the early stage of DSB response.  相似文献   
5.
SNAP-25, synaptosomal associated protein of 25 kDa, is reported to be a t-SNARE (target receptor associated with the presynaptic plasma membrane) involved in the docking and fusion of synaptic vesicles. We present here the first ultrastructural localization of SNAP-25 in intact neurons by pre-embedding EM immunocytochemistry in rat brains, hippocampal slice cultures, and PC12 cells. In differentiated neurons, SNAP-25 labeling was clearly membrane-associated. The labeling was most prominent in the plasma membrane of axons and excluded from the plasma membranes of soma and dendrites. Furthermore, SNAP-25 did not appear to be restricted to the synaptic junctions. SNAP-25 labeling was seen in the cytoplasm of the soma and large dendrites, mostly associated with the Golgi complexes. There were also some SNAP-25 labeled tubulo-vesicular structures in the cytoplasm of the soma and the axons, but rarely in the smaller dendrites. In PC12 cells, after 5–10 minutes of high potassium (75 mM) stimulation in the presence of HRP, SNAP-25 labeling appeared, additionally, on HRP-filled early endosomes. After a longer (20–30 minutes) HRP incubation, most of the later stage endosomes and lysosomes were loaded with HRP but they were negative for SNAP-25. These results suggest that SNAP-25 is sorted out of these late endosomal compartments, and that the bulk of the SNAP-25 protein is probably recycled back to the axolemma from the early endosomes. In contrast, in those samples which were incubated with HRP for longer periods, there were still some SNAP-25–positive vesicular structures which were HRP-negative. These structures most likely represent anterograde vesicles that carry newly synthesized SNAP-25 from the soma to the axolemma by axonal transport. SNAP-25 appears to be sorted at the Golgi complex to reach the axolemma specifically. Its widespread distribution all along the axolemma does not support the view of SNAP-25 as a t-SNARE limited for synaptic exocytosis.  相似文献   
6.
Brucella cell surface protein (BCSP31) is potentially useful for diagnosing brucellosis. We aimed to establish a monoclonal antibody (MAb) against Brucella melitensis BCSP31 and to investigate its distribution in diagnosis. Soluble recombinant BCSP31 was successfully expressed and purified. Two MAbs (1F1 and 1E5) against B. melitensis BCSP31, effective in detecting both recombinant and cellular proteins, were obtained and characterized. The MAbs did not react with Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Mycobacterium tuberculosis, or Bacillus aeruginosus, but strongly reacted with BCSP31 and B. melitensis by ELISA and Western blot analysis. We also tested different Brucella species and brucellosis using the prepared anti-BCSP31 MAbs. BCSP31 and anti-BCSP31 MAbs may play important roles in future research in diagnosing brucellosis.  相似文献   
7.
8.
The actin cytoskeleton is the primary polymer system within cells responsible for regulating cellular stiffness. While various actin binding proteins regulate the organization and dynamics of the actin cytoskeleton, the proteins responsible for regulating the mechanical properties of cells are still not fully understood. In the present study, we have addressed the significance of the actin associated protein, tropomyosin (Tpm), in influencing the mechanical properties of cells. Tpms belong to a multi-gene family that form a co-polymer with actin filaments and differentially regulate actin filament stability, function and organization. Tpm isoform expression is highly regulated and together with the ability to sort to specific intracellular sites, result in the generation of distinct Tpm isoform-containing actin filament populations. Nanomechanical measurements conducted with an Atomic Force Microscope using indentation in Peak Force Tapping in indentation/ramping mode, demonstrated that Tpm impacts on cell stiffness and the observed effect occurred in a Tpm isoform-specific manner. Quantitative analysis of the cellular filamentous actin (F-actin) pool conducted both biochemically and with the use of a linear detection algorithm to evaluate actin structures revealed that an altered F-actin pool does not absolutely predict changes in cell stiffness. Inhibition of non-muscle myosin II revealed that intracellular tension generated by myosin II is required for the observed increase in cell stiffness. Lastly, we show that the observed increase in cell stiffness is partially recapitulated in vivo as detected in epididymal fat pads isolated from a Tpm3.1 transgenic mouse line. Together these data are consistent with a role for Tpm in regulating cell stiffness via the generation of specific populations of Tpm isoform-containing actin filaments.  相似文献   
9.
Various physiological and psychological functions are influenced by circadian typology (CT), which was reported to be related to resilience. However, few studies have assessed the effects of CT in relation to resilience. The aim of the present study was to assess the influence of CT on sleep-related symptoms, physical fatigue and psychological well-being in relation to resilience. The present study included a total of 1794 healthy hospital employees, and they completed the Morningness–Eveningness Questionnaire, Connor–Davidson Resilience Scale, Pittsburgh Sleep Quality Index, Epworth Sleepiness Scale, Fatigue Severity Scale, Hospital Anxiety and Depression Scale and World Health Organization Quality of Life Scale Abbreviated Version. Subjects with evening type showed lower sleep quality, more daytime sleepiness and physical fatigue than neither types and morning types. Additionally, evening types were more depressed and anxious and reported a poorer quality of life. CT was found to be a significant predictor of sleep quality, but CT was minimally associated with physical fatigue and psychological well-being in the regression analysis. Instead, resilience was substantially related to all of the variables measured. In conclusion, CT independently predicts sleep quality, but the effects of CT on physical fatigue and psychological well-being are negligible compared to those of resilience.  相似文献   
10.
ObjectiveWe investigated whether glutamate, NMDA receptors, and eukaryote elongation factor-2 kinase (eEF-2K)/eEF-2 regulate P-glycoprotein expression, and the effects of the eEF-2K inhibitor NH125 on the expression of P-glycoprotein in rat brain microvessel endothelial cells (RBMECs).MethodsCortex was obtained from newborn Wistar rat brains. After surface vessels and meninges were removed, the pellet containing microvessels was resuspended and incubated at 37°C in culture medium. Cell viability was assessed by the MTT assay. RBMECs were identified by immunohistochemistry with anti-vWF. P-glycoprotein, phospho-eEF-2, and eEF-2 expression were determined by western blot analysis. Mdr1a gene expression was analyzed by RT-PCR.ResultsMdr1a mRNA, P-glycoprotein and phospho-eEF-2 expression increased in L-glutamate stimulated RBMECs. P-glycoprotein and phospho-eEF-2 expression were down-regulated after NH125 treatment in L-glutamate stimulated RBMECs.ConclusionseEF-2K/eEF-2 should have played an important role in the regulation of P-glycoprotein expression in RBMECs. eEF-2K inhibitor NH125 could serve as an efficacious anti-multidrug resistant agent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号