首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In China, brucellosis is an endemic disease and the main sources of brucellosis in animals and humans are infected sheep, cattle and swine. Brucella melitensis (biovars 1 and 3) is the predominant species, associated with sporadic cases and outbreak in humans. Isolates of B. abortus, primarily biovars 1 and 3, and B. suis biovars 1 and 3 are also associated with sporadic human brucellosis. In this study, the genetic profiles of B. melitensis and B. abortus isolates from humans and animals were analyzed and compared by multi-locus variable-number tandem-repeat analysis (MLVA). Among the B. melitensis isolates, the majority (74/82) belonged to MLVA8 genotype 42, clustering in the ‘East Mediterranean’ group. Two B. melitensis biovar 1 genotype 47 isolates, belonging to the ‘Americas’ group, were recovered; both were from the Himalayan blue sheep (Pseudois nayaur, a wild animal). The majority of B. abortus isolates (51/70) were biovar 3, genotype 36. Ten B. suis biovar 1 field isolates, including seven outbreak isolates recovered from a cattle farm in Inner Mongolia, were genetically indistinguishable from the vaccine strain S2, based on MLVA cluster analysis. MLVA analysis provided important information for epidemiological trace-back. To the best of our knowledge, this is the first report to associate Brucella cross-infection with the vaccine strain S2 based on molecular comparison of recovered isolates to the vaccine strain. MLVA typing could be an essential assay to improve brucellosis surveillance and control programs.  相似文献   

2.
The possibility of expressing a homologous antigen and a heterologous antigen simultaneously in an attenuated Brucella melitensis strain was investigated. The Brucella wboA gene encoding a mannosyltransferase involved in biosynthesis of lipopolysaccharide O-antigen, and the Bacillus anthracis pag gene encoding the protective antigen (PA) were cloned into plasmid pBBR4MCS. The resulting plasmid was introduced into O-antigen deficient B. melitensis strain WRRP1 to produce strain WRSPA. Strain WRSPA produced O-antigen and a series of PA products, induced protection in BALB/c mice against challenge with B. melitensis strain 16M, but failed to protect A/J mice against challenge with B. anthracis Sterne strain.  相似文献   

3.
Brucellosis is a zoonosis caused by bacteria of the Brucella genus. In ruminants, brucellosis causes abortion, followed by chronic infection and secretion of bacteria in milk. In humans, it usually presents as flu‐like symptoms, with serious complications if untreated. Epidemiological studies have only recently established that brucellosis can also cause pregnancy complications in women, but the pathogenic mechanisms are unknown. Pioneering studies in ruminants showed that Brucella infect trophoblasts and then colonise the placenta where they grow to high density. A recent study showed that the main zoonotic Brucella species can infect human cytotrophoblasts (CTB) and extravillous trophoblasts (EVT). In this work, we show that Brucella papionis (associated with stillbirth in primates) also infects human trophoblasts. However, it replicates actively in CTB, whereas its replication is very restricted within EVT. We also observed alteration of several trophoblastic functions upon infection by Bpapionis or Brucella melitensis (the most prevalent species in human brucellosis). Infection altered the production of hormones, the ability of CTB to form syncytiotrophoblasts, and the invasion capacity of EVT. We also found that infection can spread between different types of trophoblasts. These findings constitute a new step in understanding how Brucella infection causes adverse pregnancy outcomes.  相似文献   

4.
Brucella melitensis is the most common Brucella species causing human brucellosis. B. melitensis is divided into 3 biovars. Here, we report the complete genome sequence of B. melitensis strain 128, a strain of biovar 3 of sequence type 8, which is prevalent in China.  相似文献   

5.

Background:

DNA vaccination with plasmid encoding bacterial, viral, and parasitic immunogens has been shown to be an attractive method to induce efficient immune responses. Bacteria of the genus Brucella are facultative intracellular pathogens for which new and efficient vaccines are needed.

Methods:

To evaluate the use of a DNA immunization strategy for protection against brucellosis, a plasmid containing the DNA encoding the Brucella melitensis (B. melitensis) 31 kDa outer membrane protein, as a potent immunogenic target, was constructed.

Results:

The constructed plasmid, pcDNA3.1+omp31, was injected intramuscularly into mice and the expression of omp31 RNA was assessed by RT-PCR. The integrity of the pcDNA3.1+omp31 construct was confirmed with restriction analysis and sequencing. Omp31 mRNA expression was verified by RT-PCR.

Conclusion:

Our results indicate that the pcDNA3.1+omp31 eukaryotic expression vector expresses omp31 mRNA and could be useful as a vaccine candidate.Key Words: Brucella melitensis, omp31, DNA Vaccine, pcDNA3.1  相似文献   

6.
Protective efficiency of a combination of four recombinant Brucella abortus (B. abortus) proteins, namely, ribosomal protein L7/L12, outer membrane protein (OMP) 22, OMP25 and OMP31, was evaluated as a combined subunit vaccine (CSV) against B. abortus infection in RAW 264.7 cell line and murine model. Four proteins were cloned, expressed and purified, and their immunocompetence was analysed. BALB/c mice were immunized subcutaneously with single subunit vaccines (SSVs) or CSV. Cellular and humoral immune responses were determined by ELISA. Results of immunoreactivity showed that these four recombinant proteins reacted with Brucella-positive serum individually but not with Brucella-negative serum. A massive production of IFN-γ and IL-2 but low degree of IL-10 was observed in mice immunized with SSVs or CSV. In addition, the titres of IgG2a were heightened compared with IgG1 in SSV- or CSV-immunized mice, which indicated that SSVs and CSV induced a typical T-helper-1-dominated immune response in vivo. Further investigation of the CSV showed a superior protective effect in mice against brucellosis. The protection level induced by CSV was significantly higher than that induced by SSVs, which was not significantly different compared with a group immunized with RB51. Collectively, these antigens of Brucella could be potential candidates to develop subunit vaccines, and the CSV used in this study could be a potential candidate therapy for the prevention of brucellosis.  相似文献   

7.
The incidence of human brucellosis in Kyrgyzstan has been increasing in the last years and was identified as a priority disease needing most urgent control measures in the livestock population. The latest species identification of Brucella isolates in Kyrgyzstan was carried out in the 1960s and investigated the circulation of Brucella abortus, B. melitensis, B. ovis, and B. suis. However, supporting data and documentation of that experience are lacking. Therefore, typing of Brucella spp. and identification of the most important host species are necessary for the understanding of the main transmission routes and to adopt an effective brucellosis control policy in Kyrgyzstan. Overall, 17 B. melitensis strains from aborted fetuses of sheep and cattle isolated in the province of Naryn were studied. All strains were susceptible to trimethoprim-sulfamethoxazole, gentamicin, rifampin, ofloxacin, streptomycin, doxycycline, and ciprofloxacin. Multilocus variable number tandem repeat analysis showed low genetic diversity. Kyrgyz strains seem to be genetically associated with the Eastern Mediterranean group of the Brucella global phylogeny. We identified and confirmed transmission of B. melitensis to cattle and a close genetic relationship between B. melitensis strains isolated from sheep sharing the same pasture.  相似文献   

8.
Brucella melitensis infection causes acute necrotizing inflammation in pregnant animals; however, the pathophysiological mechanisms leading to placentitis are unknown. Here, we demonstrate that high‐mobility group box 1 (HMGB1) acts as a mediator of placenta inflammation in Bmelitensis‐infected pregnant mice model. HMGB1 levels were increased in trophoblasts or placental explant during B. melitensis infection. Inhibition of HMGB1 activity with neutralising antibody significantly reduced the secretion of inflammatory cytokines in B. melitensis‐infected trophoblasts or placenta, whereas administration of recombinant HMGB1 (rHMGB1) increased the inflammatory response. Mechanistically, this decreased inflammatory response results from inhibition of HMGB1 activity, which cause the suppression of both mitogen‐activated protein kinases and nuclear factor kappa‐light‐chain‐enhancer of activated B cells (NF‐κB) activation. Moreover, neutralising antibody to HMGB1 prevented B. melitensis infection‐induced activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase in trophoblasts. In contrast, in vitro stimulation of trophoblasts with rHMGB1 caused activation of NADPH oxidase and increased the production of ROS, which contributes to high bacterial burden within trophoblasts or placenta. In vivo, treatment with anti‐HMGB1 antibody increases the number of Brucella survival within placenta in B. melitensis‐infected pregnant mice but successfully reduced the severity of placentitis and abortion.  相似文献   

9.
Human brucellosis is most commonly diagnosed by serology based on agglutination of fixed Brucella abortus as antigen. Nucleic acid amplification techniques have not proven capable of reproducibly and sensitively demonstrating the presence of Brucella DNA in clinical specimens. We sought to optimize a monoclonal antibody-based assay to detect Brucella melitensis lipopolysaccharide in blood by conjugating B. melitensis LPS to keyhole limpet hemocyanin, an immunogenic protein carrier to maximize IgG affinity of monoclonal antibodies. A panel of specific of monoclonal antibodies was obtained that recognized both B. melitensis and B. abortus lipopolysaccharide epitopes. An antigen capture assay was developed that detected B. melitensis in the blood of experimentally infected mice and, in a pilot study, in naturally infected Peruvian subjects. As a proof of principle, a majority (7/10) of the patients with positive blood cultures had B. melitensis lipopolysaccharide detected in the initial blood specimen obtained. One of 10 patients with relapsed brucellosis and negative blood culture had a positive serum antigen test. No seronegative/blood culture negative patients had a positive serum antigen test. Analysis of the pair of monoclonal antibodies (2D1, 2E8) used in the capture ELISA for potential cross-reactivity in the detection of lipopolysaccharides of E. coli O157:H7 and Yersinia enterocolitica O9 showed specificity for Brucella lipopolysaccharide. This new approach to develop antigen-detection monoclonal antibodies against a T cell-independent polysaccharide antigen based on immunogenic protein conjugation may lead to the production of improved rapid point-of-care-deployable assays for the diagnosis of brucellosis and other infectious diseases.  相似文献   

10.
Exosomes, membrane vesicles released extracellularly from cells, contain nucleic acids, proteins, lipids and other components, allowing the transfer of material information between cells. Recent studies reported the role of exosomes in pathogenic microbial infection and host immune mechanisms. Brucella-invasive bodies can survive in host cells for a long time and cause chronic infection, which causes tissue damage. Whether exosomes are involved in host anti-Brucella congenital immune responses has not been reported. Here, we extracted and identified exosomes secreted by Brucella melitensis M5 (Exo-M5)-infected macrophages, and performed in vivo and in vitro studies to examine the effects of exosomes carrying antigen on the polarization of macrophages and immune activation. Exo-M5 promoted the polarization of M1 macrophages, which induced the significant secretion of M1 cytokines (tumour necrosis factor-α and interferon-γ) through NF-κB signalling pathways and inhibited the secretion of M2 cytokines (IL-10), thereby inhibiting the intracellular survival of Brucella. Exo-M5 activated innate immunity and promoted the release of IgG2a antibodies that protected mice from Brucella infection and reduced the parasitaemia of Brucella in the spleen. Furthermore, Exo-M5 contained Brucella antigen components, including Omp31 and OmpA. These results demonstrated that exosomes have an important role in immune responses against Brucella, which might help elucidate the mechanisms of host immunity against Brucella infection and aid the search for Brucella biomarkers and the development of new vaccine candidates.  相似文献   

11.

Background

The brucellae are facultative intracellular bacteria that cause brucellosis, one of the major neglected zoonoses. In endemic areas, vaccination is the only effective way to control this disease. Brucella melitensis Rev 1 is a vaccine effective against the brucellosis of sheep and goat caused by B. melitensis, the commonest source of human infection. However, Rev 1 carries a smooth lipopolysaccharide with an O-polysaccharide that elicits antibodies interfering in serodiagnosis, a major problem in eradication campaigns. Because of this, rough Brucella mutants lacking the O-polysaccharide have been proposed as vaccines.

Methodology/Principal Findings

To examine the possibilities of rough vaccines, we screened B. melitensis for lipopolysaccharide genes and obtained mutants representing all main rough phenotypes with regard to core oligosaccharide and O-polysaccharide synthesis and export. Using the mouse model, mutants were classified into four attenuation patterns according to their multiplication and persistence in spleens at different doses. In macrophages, mutants belonging to three of these attenuation patterns reached the Brucella characteristic intracellular niche and multiplied intracellularly, suggesting that they could be suitable vaccine candidates. Virulence patterns, intracellular behavior and lipopolysaccharide defects roughly correlated with the degree of protection afforded by the mutants upon intraperitoneal vaccination of mice. However, when vaccination was applied by the subcutaneous route, only two mutants matched the protection obtained with Rev 1 albeit at doses one thousand fold higher than this reference vaccine. These mutants, which were blocked in O-polysaccharide export and accumulated internal O-polysaccharides, stimulated weak anti-smooth lipopolysaccharide antibodies.

Conclusions/Significance

The results demonstrate that no rough mutant is equal to Rev 1 in laboratory models and question the notion that rough vaccines are suitable for the control of brucellosis in endemic areas.  相似文献   

12.

Background  

The Brucella genome contains an insertion sequence (IS) element called IS711 or IS6501, which is specific to the genus. The copy number of IS711 varies in the genome of the different Brucella species, ranging from 7 in B. abortus, B. melitensis and B. suis to more than 30 in B. ovis and in Brucella strains isolated from marine mammals. At present, there is no experimental evidence of transposition of IS711, but the occurrence of this element with a high copy number in some species, and the isolation of Brucella strains with "ectopic" copies of IS711 suggested that this IS could still transpose.  相似文献   

13.
Brucella spp. are facultative intracellular pathogens that have the ability to survive and multiply in professional and non-professional phagocytes, and cause abortion in domestic animals and undulant fever in humans. Several species are recognized within the genus Brucella and this classification is mainly based on the difference in pathogenicity and in host preference. Brucella strains may occur as either smooth or rough, expressing smooth LPS (S-LPS) or rough LPS (R-LPS) as major surface antigen. This bacterium possesses an unconventional non-endotoxic lipopolysaccharide that confers resistance to anti-microbial attacks and modulates the host immune response. The strains that are pathogenic for humans (B. abortus, B. suis, B. melitensis) carry a smooth LPS involved in the virulence of these bacteria. The LPS O-chain protects the bacteria from cellular cationic peptides, oxygen metabolites and complement-mediated lysis and it is a key molecule for Brucella survival and replication in the host. Here, we review i) Brucella LPS structure; ii) Brucella genome, iii) genes involved in LPS biosynthesis; iv) the interaction between LPS and innate immunity.  相似文献   

14.
Brucellosis is a major zoonotic disease, and Brucella melitensis is the species most often associated with human infection. Vaccination is the most efficient tool for controlling animal brucellosis, with a consequent decrease of incidence of human infections. Commercially available live attenuated vaccines provide some degree of protection, but retain residual pathogenicity to human and animals. In this study, Brucella ovisabcBA (BoabcBA), a live attenuated candidate vaccine strain, was tested in two formulations (encapsulated with alginate and alginate plus vitelline protein B [VpB]) to immunize mice against experimental challenge with B. melitensis strain 16M. One week after infection, livers and spleens of immunized mice had reduced numbers of the challenge strain B. melitensis 16M when compared with those of nonimmunized mice, with a reduction of approximately 1-log10 of B. melitensis 16M count in the spleens from immunized mice. Moreover, splenocytes stimulated with B. melitensis antigens in vitro secreted IFN-γ when mice had been immunized with BoabcBA encapsulated with alginate plus VpB, but not with alginate alone. Body and liver weights were similar among groups, although spleens from mice immunized with BoabcBA encapsulated with alginate were larger than those immunized with BoabcBA encapsulated with alginate plus VpB or nonimmunized mice. This study demonstrated that two vaccine formulations containing BoabcBA protected mice against experimental challenge with B. melitensis.  相似文献   

15.
Antigenic Relationship of Brucella ovis and Brucella melitensis   总被引:15,自引:4,他引:11  
Immune sera were prepared in rabbits by the injection of living and acetone-killed cells of Brucella ovis and smooth and rough B. melitensis. The use of whole-cell antigens in agglutination and agglutinin-absorption tests revealed little relationship between B. ovis and smooth B. melitensis, although there was extensive cross-agglutination between B. ovis and rough B. melitensis. The use of water-soluble antigens prepared from ultrasonically treated cells of the three strains revealed extensive cross-reactions in indirect hemagglutination, agar gel precipitation, and immunoelectrophoresis tests, as well as in allergic skin tests in rabbits. The most definitive results were obtained with the immunoelectrophoresis technique. B. ovis antigen produced at least 11 lines with its homologous serum. All were removed by absorption of the serum with rough B. melitensis antigen. All but three were removed by absorption with smooth B. melitensis antigen. Smooth B. melitensis antigen produced 11 lines with its homologous serum, and all but 3 were removed by absorption with B. ovis antigen. Rough B. melitensis produced nine lines with its homologous serum, and eight were removed by B. ovis antigen. The extensive cross-reactions between soluble antigens of B. ovis and B. melitensis are added evidence that B. ovis belongs in the genus Brucella.  相似文献   

16.
Brucella melitensis is a facultative intracellular bacterium that causes brucellosis, the most prevalent zoonosis worldwide. The Brucella intracellular replicative niche in macrophages and dendritic cells thwarts immune surveillance and complicates both therapy and vaccine development. Currently, host-pathogen interactions supporting Brucella replication are poorly understood. Brucella fuses with the endoplasmic reticulum (ER) to replicate, resulting in dramatic restructuring of the ER. This ER disruption raises the possibility that Brucella provokes an ER stress response called the Unfolded Protein Response (UPR). In this study, B. melitensis infection up regulated expression of the UPR target genes BiP, CHOP, and ERdj4, and induced XBP1 mRNA splicing in murine macrophages. These data implicate activation of all 3 major signaling pathways of the UPR. Consistent with previous reports, XBP1 mRNA splicing was largely MyD88-dependent. However, up regulation of CHOP, and ERdj4 was completely MyD88 independent. Heat killed Brucella stimulated significantly less BiP, CHOP, and ERdj4 expression, but induced XBP1 splicing. Although a Brucella VirB mutant showed relatively intact UPR induction, a TcpB mutant had significantly compromised BiP, CHOP and ERdj4 expression. Purified TcpB, a protein recently identified to modulate microtubules in a manner similar to paclitaxel, also induced UPR target gene expression and resulted in dramatic restructuring of the ER. In contrast, infection with the TcpB mutant resulted in much less ER structural disruption. Finally, tauroursodeoxycholic acid, a pharmacologic chaperone that ameliorates the UPR, significantly impaired Brucella replication in macrophages. Together, these results suggest Brucella induces a UPR, via TcpB and potentially other factors, that enables its intracellular replication. Thus, the UPR may provide a novel therapeutic target for the treatment of brucellosis. These results also have implications for other intracellular bacteria that rely on host physiologic stress responses for replication.  相似文献   

17.
《Small Ruminant Research》2010,94(2-3):119-125
An enzyme-linked immunosorbent assay (ELISA) was developed for the serological diagnosis of caprine brucellosis with purified recombinant BP26 (outer membrane protein 28) of Brucella melitensis 16M produced in Escherichia coli. Brucella protein named CP28, BP26, or Omp28 has been identified as an immunodominant antigen in infected cattle, sheep, goats, and humans. The recombinant BP26 (rBP6) ELISA performed with serum samples (n = 1738) taken from organized farms and field goats from Northern India and tested in two different batches of 778 and 960 animals for brucellosis. Positive results were compared with the traditional serum agglutination test (SAT), complement fixation test (CFT) and dot-ELISA. The diagnostic sensitivity of rBP26 ELISA, SAT, CFT and dot-ELISA was 87.5%, 56.25%, 62.5% and 75% respectively. The specificity of the rBP26 ELISA, SAT, CFT and dot-ELISA was 90%, 75%, 80%, and 85% respectively. The results of rBP26 ELISA positive animals were further compared and evaluated by tissue PCR using B. melitensis BP26 gene as target. This resulted in 100% positive correlation between rBP26 ELISA and BP26 PCR. Thus, these results confirmed the importance of BP26 as a suitable antigen and rBP26 ELISA, if well standardized, proved to be a good screening test for the serological diagnosis of caprine brucellosis.  相似文献   

18.

Background

Arduous to differ clinically, extrapulmonary tuberculosis and focal complications of brucellosis remain important causes of morbidity and mortality in many countries. We developed and applied a multiplex real-time PCR assay (M RT-PCR) for the simultaneous detection of Mycobacterium tuberculosis complex and Brucella spp.

Methodology

Conventional microbiological techniques and M RT-PCR for M. tuberculosis complex and Brucella spp were performed on 45 clinical specimens from patients with focal complications of brucellosis or extrapulmonary tuberculosis and 26 control samples. Fragments of 207 bp and 164 bp from the conserved region of the genes coding for an immunogenic membrane protein of 31 kDa of B. abortus (BCSP31) and the intergenic region SenX3-RegX3 were used for the identification of Brucella and M. tuberculosis complex, respectively.

Conclusions

The detection limit of the M RT-PCR was 2 genomes per reaction for both pathogens and the intra- and inter-assay coefficients of variation were 0.44% and 0.93% for Brucella and 0.58% and 1.12% for Mycobacterium. M RT-PCR correctly identified 42 of the 45 samples from patients with tuberculosis or brucellosis and was negative in all the controls. Thus, the overall sensitivity, specificity, PPV and NPV values of the M RT PCR assay were 93.3%, 100%, 100% and 89.7%, respectively, with an accuracy of 95.8% (95% CI, 91.1%–100%). Since M RT-PCR is highly reproducible and more rapid and sensitive than conventional microbiological tests, this technique could be a promising and practical approach for the differential diagnosis between extrapulmonary tuberculosis and focal complications of brucellosis.  相似文献   

19.

Background

MALDI-TOF mass spectrometry (MS) is a reliable method for bacteria identification. Some databases used for this purpose lack reference profiles for Brucella species, which is still an important pathogen in wide areas around the world. We report the creation of profiles for MALDI-TOF Biotyper 2.0 database (Bruker Daltonics, Germany) and their usefulness for identifying brucellae from culture plates and blood cultures.

Methodology/Principal Findings

We created MALDI Biotyper 2.0 profiles for type strains belonging to B. melitensis biotypes 1, 2 and 3; B. abortus biotypes 1, 2, 5 and 9; B. suis, B. canis, B ceti and B. pinnipedialis. Then, 131 clinical isolates grown on plate cultures were used in triplicate to check identification. Identification at genus level was always correct, although in most cases the three replicates reported different identification at species level. Simulated blood cultures were performed with type strains belonging to the main human pathogenic species (B. melitensis, B. abortus, B. suis and B. canis), and studied by MALDI-TOF MS in triplicate. Identification at genus level was always correct.

Conclusions/Significance

MALDI-TOF MS is reliable for Brucella identification to the genus level from culture plates and directly from blood culture bottles.  相似文献   

20.
A total of 29 strains of Brucella abortus, B. melitensis, B. suis, B. ovis, and B. neotomae were examined for growth and catechol production in a semisynthetic low-iron medium. All strains showed reduced growth yields and, quantitatively, production of catechols varied widely among the different strains with no relationship to species, biotypes, or serotypes of Brucella. No clear correlation between catechol production and growth under iron-limiting conditions was observed. The major catechol was identified as 2,3-dihydroxybenzoic acid, and neither other iron-regulated catechols nor hydroxamate type compounds were detected when representative strains of B. abortus or B. melitensis were grown in tryptic soy broth in the presence of iron-sequestering agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号