首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Distributions of exotic plants in eastern Asia and North America   总被引:3,自引:0,他引:3  
Guo Q  Qian H  Ricklefs RE  Xi W 《Ecology letters》2006,9(7):827-834
Although some plant traits have been linked to invasion success, the possible effects of regional factors, such as diversity, habitat suitability, and human activity are not well understood. Each of these mechanisms predicts a different pattern of distribution at the regional scale. Thus, where climate and soils are similar, predictions based on regional hypotheses for invasion success can be tested by comparisons of distributions in the source and receiving regions. Here, we analyse the native and alien geographic ranges of all 1567 plant species that have been introduced between eastern Asia and North America or have been introduced to both regions from elsewhere. The results reveal correlations between the spread of exotics and both the native species richness and transportation networks of recipient regions. This suggests that both species interactions and human-aided dispersal influence exotic distributions, although further work on the relative importance of these processes is needed.  相似文献   

2.
Aim Biotic homogenization is a growing phenomenon and has recently attracted much attention. Here, we analyse a large dataset of native and alien plants in North America to examine whether biotic homogenization is related to several ecological and biological attributes. Location North America (north of Mexico). Methods We assembled species lists of native and alien vascular plants for each of the 64 state‐ and province‐level geographical units in North America. Each alien species was characterized with respect to habitat (wetland versus upland), invasiveness (invasive versus non‐invasive), life cycle (annual/biennial versus perennial) and habit (herbaceous versus woody). We calculated a Jaccard similarity index separately for native, for alien, and for native and alien species. We used the average of Jaccard dissimilarity index (1 ? Jaccard index) of all paired localities as a measure of the mean beta diversity of alien species for each set of localities examined in an analysis. We used a homogenization index to quantify the effect of homogenization or differentiation. Results We found that (1) wetland, invasive, annual/biennial and herbaceous alien plants markedly homogenized the state‐level floras whereas non‐invasive and woody alien plants tended to differentiate the floras; (2) beta diversity was significantly lower for wetland, invasive, annual/biennial and herbaceous alien plants than their counterparts (i.e. upland, non‐invasive, perennial and woody alien plants, respectively); and (3) upland and perennial alien plants each played an equal role in homogenizing and differentiating the state‐level floras. Main conclusions Our study shows that biotic homogenization is clearly related to habitat type (e.g. wetland versus uplands), species invasiveness and life‐history traits such as life cycle (e.g. annual/biennial and herbaceous versus woody species) at the spatial scale examined. These observations help to understand the process of biotic homogenization resulting from alien vascular plants in North America.  相似文献   

3.
Morrison WE  Hay ME 《PloS one》2011,6(3):e17227
Enemy release and biotic resistance are competing, but not mutually exclusive, hypotheses addressing the success or failure of non-native plants entering a new region. Enemy release predicts that exotic plants become invasive by escaping their co-adapted herbivores and by being unrecognized or unpalatable to native herbivores that have not been selected to consume them. In contrast, biotic resistance predicts that native generalist herbivores will suppress exotic plants that will not have been selected to deter these herbivores. We tested these hypotheses using five generalist herbivores from North or South America and nine confamilial pairs of native and exotic aquatic plants. Four of five herbivores showed 2.4-17.3 fold preferences for exotic over native plants. Three species of South American apple snails (Pomacea sp.) preferred North American over South American macrophytes, while a North American crayfish Procambarus spiculifer preferred South American, Asian, and Australian macrophytes over North American relatives. Apple snails have their center of diversity in South America, but a single species (Pomacea paludosa) occurs in North America. This species, with a South American lineage but a North American distribution, did not differentiate between South American and North American plants. Its preferences correlated with preferences of its South American relatives rather than with preferences of the North American crayfish, consistent with evolutionary inertia due to its South American lineage. Tests of plant traits indicated that the crayfish responded primarily to plant structure, the apple snails primarily to plant chemistry, and that plant protein concentration played no detectable role. Generalist herbivores preferred non-native plants, suggesting that intact guilds of native, generalist herbivores may provide biotic resistance to plant invasions. Past invasions may have been facilitated by removal of native herbivores, introduction of non-native herbivores (which commonly prefer native plants), or both.  相似文献   

4.
We assessed how establishment patterns of non-native freshwater, marine and terrestrial species into Northwest Europe (using Great Britain, France, Belgium and the Netherlands as the study countries) have changed over time, and identified the prevalent pathways and vectors of recent arrivals. Data were extracted from 33 sources on (a) presence/absence and (b) first year of observation in the wild in each country, and (c) continent(s) of origin, (d) invasion pathway(s), (e) invasion vector(s) and (f) environment(s) for 359 species, comprising all non-native Mollusca, Osteichthyes (bony fish), Anseriformes (wildfowl) and Mammalia, and non-native invasive Angiospermae present in the area. Molluscs, fish and wildfowl, particularly those originating from South America, arrived more recently into Northwest Europe than other groups, particularly mammals, invasive plants and species originating from North America. Non-deliberate introductions, those of aquatic species and those from elsewhere in Europe and/or Asia increased strongly in importance after the year 2000 and were responsible for 69, 83 and 89 % of new introductions between 2001 and 2015, respectively. Non-deliberate introductions and those from Asia and North America contributed significantly more to introductions of invasive species in comparison to other non-native species. From the 1960s, ornamental trade has increased in importance relative to other vectors and was responsible for all deliberate introductions of study groups since 2001. Non-deliberate introductions of freshwater and marine species originating from Southeast Europe and Asia represent an increasingly important ecological and economic threat to Northwest Europe. Invertebrates such as molluscs may be particularly dangerous due to their small size and difficulties in detection. Prevention of future invasions in this respect will require intensive screening of stowaways on boats and raising of public awareness.  相似文献   

5.
理解入侵生物的繁殖策略是阐明生物入侵机制的一个重要方面。入侵植物常表现出一些共同的繁殖特征, 如以两性花为主的性系统、自动自交为主的繁育系统或不依赖传粉媒介的无融合生殖和无性繁殖以及高生殖投资的资源配置策略等。成功入侵的外来植物通过影响本土的传粉者, 在种群和群落水平上影响本土植物的有性繁殖, 甚至促使某些本土植物在繁殖对策和表型性状上发生快速转变。目前, 入侵植物繁殖策略及其生态效应的研究多侧重于入侵种的快速演化, 而有关外来植物与本土植物间的相互影响及其可能存在的协同适应研究还较为缺乏。探讨本土植物在外来种入侵压力下的繁殖对策和响应机制, 将丰富人们对物种间竞争、共存及群落构建等机制的深入了解。从繁殖和适应的角度探求入侵植物与本土植物之间的复杂关系, 将有助于解析生物入侵的机制及人类干扰下的物种演化规律, 也为预测和防控入侵植物提供科学依据。  相似文献   

6.
An aggressive, non-native haplotype (distinct genetic lineage within a species) of Phragmites australis is invading brackish and freshwater systems in the eastern United States, potentially displacing native haplotypes. We studied the differential susceptibility of native and non-native populations collected from sites throughout North America to the non-native aphid, Hyalopterus pruni. In a greenhouse study, we found significantly higher aphid populations on native haplotypes than on the non-native haplotype 2 mo after infestation. Aphid feeding caused chlorosis and death of native stems, and in some cases, killed whole native genets. The non-native plants remained relatively undamaged. In a field study, non-native plants had significantly lower aphid densities than native plants or remained aphid free. There was an interactive effect in which aphid populations increased on the native plants over the 1-mo study period but remained low on non-native plants over the same period. The susceptibility of native North American populations of P. australis to non-native aphid infestation may indirectly affect the ability of these native plants to compete with non-native plant populations, ultimately contributing to the decline of native haplotypes.  相似文献   

7.
作者在整理北美外来入侵植物中发现一些起源(或主要分布)于东亚植物的学名,在北美乃至欧洲使用非常混乱.本文特将有关重要类群整理出来,包括异名、原产地、北美的分布以及必要的讨论等.  相似文献   

8.
European and Asian earthworms have invaded much of North America with profound impacts to soils, plant communities, and animal populations. However, few studies have assessed local-scale correlates of earthworm distributions, and most invasive earthworm research has occurred in northern forests. Additionally, despite several studies showing facilitative relationships between invasive earthworms and invasive plants, no research has assessed a potential facilitative interaction between earthworms and woody plants encroaching into prairies. We conducted the first assessment of factors influencing local-scale distributions of native and non-native earthworms for the U.S. Great Plains in a tallgrass prairie-woodland mosaic experiencing eastern redcedar (Juniperus virginiana) encroachment. We documented both native and non-native earthworms, including non-native species from Eurasia (Aporrectodea spp.) and South America (Family Ocnerodrilidae). Native and non-native earthworm distributions were strongly correlated, yet local-scale predictors of distribution also differed between the groups. Native earthworms were more likely to occur near roads and in areas with moist soils. Contrary to expectation, we found no evidence that non-native earthworms occurred more frequently in areas with eastern redcedar-encroachment; instead, non-native earthworms were most likely to occur in tallgrass prairie. Our results suggest that, within prairies and woodlands of the Great Plains, native and non-native earthworms occur most frequently near roadways and in locations with moist soil. Because the few approaches for controlling invasive earthworms are only likely to be feasible on a small scale, findings from such local-scale studies are important for directing management to reduce earthworm impacts on biodiversity and ecosystem services.  相似文献   

9.
跨太平洋生物入侵研究展望   总被引:26,自引:1,他引:25       下载免费PDF全文
跨太平洋生物入侵是当代最受关注、最具影响的生物学现象之一 ,这一过程导致并促进了新东亚 -北美间断分布格局 (与许多众所周知的古间断分布相对应 )的形成。为了更好地了解这一现象以及相关的生物类群 ,我们探讨了以下几个问题 :1)哪些类型的物种参与或可能会参与跨太平洋生物入侵 ,2 )这些入侵种在入侵之后会发生什么变化以及会导致什么样的后果 ,3)为了有效地监控生物入侵 ,我们应该从哪些方面着手研究入侵种及其原生和非原生生境。为了解决这些问题 ,我们应该对原产地和入侵地的这些物种进行比较研究 ,这些研究包括 :1)遗传学 ,2 )生活史 /形态学 (如 :个体大小、种子大小等 ) ,3)生态学 (如 :生活型 /生长型、传粉媒介和竞争对手等 ) ,4 )在原产地和入侵地的地理分布 (如 :分布区的大小、形状以及纬度等 ) ,5 )物理影响因子 (如土壤、水分和气候等 )。这些研究的目的在于 :1)确定外来种在其原生生境中影响其分布的限制因子 ,2 )了解入侵种能够在入侵地成功的原因 ,3)预测可能进一步发生的生物入侵 ,4 )为有效地监控和管理生物入侵提供资料。  相似文献   

10.
The taxonomic richness of seed plants at different taxonomic levels was compared between temperate East Asia and North America at both continental and semi-continental scales. In each comparison, land area and latitude range were adjusted to a comparable level between the two continental regions. East Asia is significantly more diverse than North America. In general, differences in taxonomic diversity arise at and below the genus level. At the continental scale, East Asia has 1.3 and 1.5 times as many genera and species, respectively, as North America. The northern part of East Asia has 1.1 times as many species as the northern part of North America. At the genus level, the northern part of East Asia is less diverse than the northern part of North America by a factor of 0.94. This pattern indicates that the diversity bias between the two continental regions results from the flora of southern East Asia. The diversity differences between East Asia and North America are not homogenously distributed across different plant groups. At the species level, East Asia had significantly more species than expected in magnoliids, alismatids, Liliidae, ranunculids, and rosids and had significantly less species in the Commelinidae, Caryophyllidae, and euasterids than North America.  相似文献   

11.
洲际入侵植物生态位稳定性研究进展   总被引:2,自引:0,他引:2  
朱丽  马克平 《生物多样性》2010,18(6):547-S184
人类活动引起的大规模洲际物种交换与生物入侵, 改变了当地生态系统结构与功能, 使生物多样性受到日益严重的威胁。本文通过综合分析主要国家和地区入侵植物的地理起源, 发现洲际入侵主要包括东亚—北美、东亚—南美、欧洲—南非、欧洲—北美、欧洲—东亚、北美—大洋洲等, 这些洲际入侵造成的后果往往比陆内入侵更为严重。利用物种分布模型(SDMs)预测入侵物种潜在分布范围是有效管理和提早预防生物入侵的重要依据, 但这些模型的一个关键假定是: 入侵物种的生态位在空间和时间上是保守的、稳定的。然而, 对于远离原产地种群并能快速适应新生境的洲际入侵植物来说, 生态位可能发生显著的变化。入侵种能否在入侵地保持原有的生态位, 取决于制约其生态分布的限制因素和生态过程在不同地区间是否发生变化。本文中作者总结了洲际入侵与陆内入侵的生态与进化过程的异同点, 认为这些限制物种原产地分布的因素如扩散限制、种间互作、适应性进化、生态可塑性和种群遗传特性等均可能导致入侵物种生态位的改变。建议下一步的研究应该重视: (1)对生态位属性进行多尺度的研究, 包括时间、空间、环境或系统发育等几个方面; (2)对比生态位稳定与发生偏移的物种特性, 确定什么样的入侵物种更容易改变原有的生态位; (3)进行生态位时间动态格局研究, 探讨生态位变化的倾向、历史速率和偏移程度, 以便判定生态位变化趋势。这些研究结果将会进一步提高物种分布模型的预测能力, 有助于更为准确地揭示气候变化和物种入侵对生物多样性的影响。  相似文献   

12.
【目的】近年来,外来入侵植物对京津冀地区的生态安全和经济贸易发展构成了严重威胁。了解京津冀地区入侵植物种类组成,分析其分布特点,能够为京津冀地区外来入侵植物扩散的防控、生物多样性保护与生态安全提供理论依据。【方法】对京津冀外来入侵植物的种类、原产地、生活型、危害程度、引入途径等进行调查和分析。【结果】京津冀目前有99种外来入侵植物,其中恶性杂草11种。菊科和禾本科为优势科,所含种数分别为24和12种。京津冀外来入侵植物以一、二年草本植物为主;美洲是京津冀入侵植物的最大起源地,其中,北美地区23种,美洲热带和中、南美洲共32种;人为有意引进共56种,占外来入侵植物总种数的56.57%。【结论】当前京津冀地区外来植物入侵状况比较严重,且该地区入侵植物的入侵与其社会经济学因子和生物地理学因子密切有关,有意引入是京津冀地区外来植物入侵的主要途径。  相似文献   

13.
Differences in morphological or ecological traits expressed by exotic species between their native and non-native ranges are often interpreted as evidence for adaptation to new conditions in the non-native ranges. In turn this adaptation is often hypothesized to contribute to the successful invasion of these species. There is good evidence for rapid evolution by many exotic invasives, but the extent to which these evolutionary changes actually drive invasiveness is unclear. One approach to resolving the relationship between adaptive responses and successful invasion is to compare traits between populations from the native and non-native ranges for both exotic invaders and congeners that are exotic but not invasive. We compared a suite of morphological traits that are commonly tested in the literature in the context of invasion for three very closely related species of Centaurea, all of which are sympatric in the same native and non-native ranges in Europe and North America. Of these, C. solstitialis is highly invasive whereas C. calcitrapa and C. sulphurea are not. For all three species, plants from non-native populations showed similar shifts in key traits that have been identified in other studies as important putative adaptive responses to post-introduction invasion. For example, for all three species plants from populations in non-native ranges were (i) larger and (ii) produced seeds that germinated at higher rates. In fact, the non-invasive C. calcitrapa showed the strongest trait shift between ranges. Centaurea solstitialis was the only species for which plants from the non-native range increased allocation to defensive spines, and allocated proportionally less resources to reproduction, patterns contrary to what would be predicted by theory and other empirical studies to enhance invasion. Our results suggest caution when interpreting the commonly observed increase in size and reproductive capacity as factors that cause exotics to become invaders.  相似文献   

14.
Allelopathy, plant–plant interactions mediated through chemical production, is an active area of ecological research. Despite this widespread interest, we still lack community scale information on the prevalence of this interaction and the types of species that may be expected to be allelopathic. To address this research need, the allelopathic potential of 65 plant species from all stages of succession in the Piedmont region of New Jersey, USA, was determined with laboratory bioassays. The strength of each species’ allelopathic activity was then related to life form, origin, and fundamental plant traits. The vast majority of species tested exhibited significant allelopathic effects in the bioassays, with many of these having fairly strong effects. Overall, the allelopathic potential of species decreased with life span, roughly following the successional transitions from short-lived to long-lived herbs and to woody species. Herbaceous species on average were more allelopathic than woody species, but there was no difference between native and non-native species once life form was accounted for. In a principal components analysis, allelopathy was associated with other plant traits, but these relationships differed between woody and herbaceous species. Allelopathic potential was positively associated with plant height in herbaceous species, but negatively associated with height, leaf mass, and seed mass in woody species. These results indicate that allelopathy may be a quite common ecological strategy in plants and is equally common in both native and non-native species. The linkage of allelopathy with other plant functional traits suggests that allelopathy can and should be integrated into the broader suite of plant strategies that are studied.  相似文献   

15.
Journal of Insect Conservation - Sceliphron caementarium and Sceliphron curvatum are non-native species in Europe with former distributions in North America and Asia, respectively. Both species...  相似文献   

16.
The present paper aims to discuss the geog raphical distribution of the Juglandaceae on the basis of unity of the phylogeny and the process of dispersal in the plants. The paper is divided into the following three parts: 1. The systematic positions and the distribution patterns of nine living genera in the family Juglandaceae (namely, Engelhardia, Oreomunnea, Alfaroa, Pterocarya, Cyclocarya, Juglans, Carya, Annamocarya and Platycarya) are briefly discussed. The evolutional relationships between the different genera of the Juglandaceae are elucidated. The fossil distribution and the geological date of the plant groups are reviewed. Through the analysis for the geographical distribution of the Juglandaceous genera, the distribution patterns may be divided as follows: A. The tropical distribution pattern a. The genera of tropical Asia distribution: Engelhardia, Annamocarya. b. The genera of tropical Central America distribution: Oreomunnea, Alfaroa. B. The temperate distribution pattern c. The genus of disjunct distribution between Western Asia and Eastern Asia: Pterocarya. d. The genus of disjunct distribution between Eurasia and America: Juglans. e. The genus of disjunct distribution between Eastern Asia and North America: Carya. f. The genera whose distribution is confined to Eastern Asia: Cyclocarya, Platycarya. 2. The distribution of species According to Takhtajan’s view point of phytochoria, the number of species in every region are counted. It has shown clearily that the Eastern Asian Region and the Cotinental South-east Asian Region are most abundant in number of genera and species. Of the 71 living species, 53 are regional endemic elements, namely 74.6% of the total species. The author is of the opinion that most endemic species in Eurasia are of old endemic nature and in America of new endimic nature. There are now 7 genera and 28 species in China, whose south-western and central parts are most abundant in species, with Province Yunnan being richest in genera and species. 3. Discussions of the distribution patterns of the Juglandaceae A. The centre of floristic region B. The centre of floristic regions is determined by the following two principles: a. A large number of species concentrate in a district, namely the centre of the majority; b. Species of a district can reflect the main stages of the systematic evolution of the Juglandaceae, namely the centre of diversity. It has shown clearly that the southern part of Eastern Asian region and the northern part of Continental South-east Asian Region (i.c. Southern China and Northern Indo-China) are the main distribution centre of the Juglandaceae, while the southern part of Sonora Region and Caribbean Region (i.c. South-western U.S.A., Mexico and Central America) are the secondary distribution centre. As far as fossil records goes, it has shown that in Tertiary period the Juglandaceae were widely distributed in northern Eurasia and North America, growing not only in Europe and the Caucasus but also as far as in Greenland and Alaska. It may be considered that the Juglandaceae might be originated from Laurasia. According to the analysis of distribution pattern for living primitive genus, for example, Engelhardia, South-western China and Northern Indo-China may be the birthplace of the most primitive Juglandaceous plants. It also can be seen that the primitive genera and the primitive sections of every genus in the Juglandaceae have mostly distributed in the tropics or subtropics. At the same time, according to the analysis of morphological characters, such as naked buds in the primitive taxa of this family, it is considered that this character has relationship with the living conditions of their ancestors. All the evidence seems to show that the Juglandaceae are of forest origin in the tropical mountains having seasonal drying period. B. The time of the origin The geological times of fossil records are analyzed. It is concluded that the origin of the Juglandaceae dates back at least as early as the Cretaceous period. C. The routes of despersal After the emergence of the Juglandaceous plant on earth, it had first developed and dispersed in Southern China and Indo-China. Under conditions of the stable temperature and humidity in North Hemisphere during the period of its origin and development, the Juglandaceous plants had rapidly developed and distributed in Eurasia and dispersed to North America by two routes: Europe-Greenland-North America route and Asia-Bering Land-bridge-North America route. From Central America it later reached South America. D. The formaation of the modern distribution pattern and reasons for this formation. According to the fossil records, the formation of two disjunct areas was not due to the origin of synchronous development, nor to the parallel evolution in the two continents of Eurasia and America, nor can it be interpreted as due to result of transmissive function. The modern distribution pattern has developed as a result of the tectonic movement and of the climatic change after the Tertiary period. Because of the continental drift, the Eurasian Continent was separated from the North American Continent, it had formed a disjunction between Eurasia and North America. Especially, under the glaciation during the Late Tertiary and Quaternary Periods, the continents in Eurasia and North America were covered by ice sheet with the exception of “plant refuges”, most plants in the area were destroyed, but the southern part of Eastern Asia remained practically intact and most of the plants including the Juglandaceae were preserved from destruction by ice and thence became a main centre of survival in the North Hemisphere, likewise, there is another centre of survival in the same latitude in North America and Central America. E. Finally, the probable evolutionary relationships of the genera of the Juglanda-ceae is presented by the dendrogram in the text.  相似文献   

17.
《Ecological Indicators》2008,8(5):466-475
Measures used to describe the floristic structure of a habitat can vary in their ability to express trends in plant composition along anthropogenic disturbance gradients. This study was based on a survey of vascular plant biodiversity performed along stream bank habitats within an agricultural landscape in southeastern Ontario, Canada. The accuracy of several measures of plant biodiversity – including those related to a regional floristic quality assessment system – was examined to compare their ability to recognize a gradient of anthropogenic disturbance and associated floristic quality along the stream bank habitats. The floristic quality assessment system is a scheme in which all vascular plants of a region have been assigned a score corresponding to a qualitative conservation value based on habitat fidelity and tolerance of disturbance (native species), and on invasiveness (non-native species). Data were collected from a priori designated disturbed, moderate, and pristine zones along 27 stream sections exhibiting a length-wise disturbance gradient. A detrended correspondence analysis (DCA) was used to isolate the plant compositional gradient present along the stream sections. The measures of plant biodiversity recorded in the different study sites were then ranked by the degree to which they were linearly correlated with the identified compositional gradient of the DCA. The “% non-native plant species” measure was most effective at expressing the gradient, though it incorporated nothing about the fidelity and sensitivity of native plant species present in individual zones. Several measures associated with the floristic quality assessment system – including the mean coefficient of “conservatism” (mCC) – were also effective in identifying the gradient, and had the additional benefit of considering the contribution of each native species in a plot. The simple measure of “total plant species richness” proved to be a poor linear indicator due to a quadratic trend across the whole of the compositional gradient. The floristic quality assessment system proved to be a valuable tool for assessing conservation values of the selected sites. It should be extended to include further regions in Canada and North America in general. Our results further suggest that stream banks associated with open non-crop agricultural property are highly susceptible to colonization by non-native upland plants and species of low conservation interest, and that the presence of wooded areas surrounding these same streams is associated with higher numbers of native and disturbance sensitive plant species present in the bank habitats.  相似文献   

18.
Aquatic and semi-aquatic plants comprise few species worldwide, yet the introduction of non-indigenous plants represents one of the most severe examples of biological invasions. My goal is to compare the distribution and the biology of aquatic and semi-aquatic plants in their introduced ranges and in their native ranges. The primary objective of this study is to test the hypothesis that invasive species have evolved traits likely to increase their success in the new range. I made two reciprocal comparisons, i.e. I compared European species in France and in North America, and North American species in France and in North America. Twenty-seven species were classified according to their invasiveness in their introduced area. I␣found six invasive macrophyte species in France native to North America and 17 invasive species in North America native to Europe. Four species are invasive in both areas. There is no general tendency for macrophytes to be more vigorous in their introduced ranges. Most non-indigenous aquatic and semi-aquatic species are potentially invasive or widespread and well-established in their introduced country, while few species seem to be restricted in their distribution.  相似文献   

19.
This study aims to document shifts in the latitudinal distributions of non-native species relative to their own native distributions and to discuss possible causes and implications of these shifts. We used published and newly compiled data on inter-continentally introduced birds, mammals and plants. We found strong correlations between the latitudinal distributions occupied by species in their native and exotic ranges. However, relatively more non-native species occur at latitudes higher than those in their native ranges, and fewer occur at latitudes lower than those in their native ranges. Only a small fraction of species examined (i.e. <20% of animals and <10% of plants) have expanded their distributions in their exotic range beyond both high- and low-limits of their native latitudes. Birds, mammals and plants tended to shift their exotic ranges in similar ways. In addition, most non-native species (65–85% in different groups) have not reached the distributional extent observed in their native ranges. The possible drivers of latitudinal shifts in the exotic range may include climate change, greater biotic resistance at lower latitudes, historical limitations on ranges in native regions, and the impacts of humans on species distributions. The relatively restricted distribution of most species in their exotic range highlights the great potential of future spread of most introduced species and calls for closely monitoring their directional spread under climate change.  相似文献   

20.
The spread of non-native plants has been depicted as a serious threat to biodiversity. However, it remains unclear whether the indigenousness of the invading plant plays a marked role for the ecological consequences of an invasion as few studies have compared the ecological impacts of non-native shrubs with structurally or functionally comparable native shrubs. We studied patches of introduced and native shrubs to assess whether there are general differences in plant species composition or biomass between patches formed by non-native versus native shrubs. The indigenousness of the shrub (non-native vs. native) did not explain the variation in soil nutrients, neither the production of shoot biomass or allocation of growth to different parts of the shoot. The amount of light reaching ground level did not differ between patches of a non-native and a native shrub. However, species richness and biomass of herbaceous plants were lower in patches of non-native than native shrubs and the amount of litter was higher below non-native than native shrubs. Our results suggest that the indigenousness of the patch-forming plant may be an important factor for the diversity and composition of associated herbaceous vegetation. Based on our results, resource availability (light and nutrients) is not a sufficient explanation for the negative effects of non-native shrubs on plant communities. Further research is needed to investigate whether alternative explanations, such as the novelty of the toxic compounds produced by non-native plants, can explain the differences we observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号