首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein ubiquitination plays a key role in the regulation of a variety of DNA repair mechanisms. Protein ubiquitination is controlled by the coordinate activity of ubiquitin ligases and deubiquitinating enzymes (DUBs). The deubiquitinating enzyme USP1 regulates DNA repair and the Fanconi anemia pathway through its association with its WD40 binding partner, UAF1, and through its deubiquitination of two critical DNA repair proteins, FANCD2-Ub and PCNA-Ub. To investigate the function of USP1 and UAF1, we generated USP1−/−, UAF1−/−/−, and USP1−/− UAF1−/−/− chicken DT40 cell clones. These three clones showed similar sensitivities to chemical cross-linking agents, to a topoisomerase poison, camptothecin, and to an inhibitor of poly(ADP-ribose) polymerase (PARP), indicating that the USP1/UAF1 complex is a regulator of the cellular response to DNA damage. The hypersensitivity to both camptothecin and a PARP inhibitor suggests that the USP1/UAF1 complex promotes homologous recombination (HR)-mediated double-strand break (DSB) repair. To gain insight into the mechanism of the USP1/UAF1 complex in HR, we inactivated the nonhomologous end-joining (NHEJ) pathway in UAF1-deficient cells. Disruption of NHEJ in UAF1-deficient cells restored cellular resistance to camptothecin and the PARP inhibitor. Our results indicate that the USP1/UAF1 complex promotes HR, at least in part by suppressing NHEJ.  相似文献   

2.
Diploid Saccharomyces cells experiencing a double-strand break (DSB) on one homologous chromosome repair the break by RAD51-mediated gene conversion >98% of the time. However, when extensive homologous sequences are restricted to one side of the DSB, repair can occur by both RAD51-dependent and RAD51-independent break-induced replication (BIR) mechanisms. Here we characterize the kinetics and checkpoint dependence of RAD51-dependent BIR when the DSB is created within a chromosome. Gene conversion products appear within 2 h, and there is little, if any, induction of the DNA damage checkpoint; however, RAD51-dependent BIR occurs with a further delay of 2 to 4 h and cells arrest in response to the G(2)/M DNA damage checkpoint. RAD51-dependent BIR does not require special facilitating sequences that are required for a less efficient RAD51-independent process. RAD51-dependent BIR occurs efficiently in G(2)-arrested cells. Once repair is initiated, the rate of repair replication during BIR is comparable to that of normal DNA replication, as copying of >100 kb is completed less than 30 min after repair DNA synthesis is detected close to the DSB.  相似文献   

3.
USP1 deubiquitinating enzyme and its stoichiometric binding partner UAF1 play an essential role in promoting DNA homologous recombination (HR) repair in response to various types of DNA damaging agents. Deubiquitination of FANCD2 may be attributed to the key role of USP1-UAF1 complex in regulating HR repair, however whether USP1-UAF1 promotes HR repair independently of FANCD2 deubiquitination is not known. Here we show evidence that the USP1-UAF1 complex has a FANCD2-independent function in promoting HR repair. Proteomic search of UAF1-interacting proteins revealed that UAF1 associates with RAD51AP1, a RAD51-interacting protein implicated in HR repair. We show that UAF1 mediates the interaction between USP1 and RAD51AP1, and that depletion of USP1 or UAF1 led to a decreased stability of RAD51AP1. Protein interaction mapping analysis identified some key residues within RAD51AP1 required for interacting with the USP1-UAF1 complex. Cells expressing the UAF1 interaction-deficient mutant of RAD51AP1 show increased chromosomal aberrations in response to Mitomycin C treatment. Moreover, similar to the RAD51AP1 depleted cells, the cells expressing UAF1-interaction deficient RAD51AP1 display persistent RAD51 foci following DNA damage exposure, indicating that these factors regulate a later step during the HR repair. These data altogether suggest that the USP1-UAF1 complex promotes HR repair via multiple mechanisms: through FANCD2 deubiquitination, as well as by interacting with RAD51AP1.  相似文献   

4.
In response to DNA damage, eukaryotic cells must rapidly load DNA repair proteins onto damaged chromatin. Chromatin recruitment often entails ubiquitination of a damage-specific DNA repair protein, interaction with a ubiquitin binding factor, assembly of a multisubunit DNA repair complex, and eventually a deubiquitination event once the DNA repair reaction has been completed. This review focuses on the recent discoveries in the Fanconi Anemia (FA) and DNA double-strand break (DSB) repair pathways, which underscore the importance of regulated chromatin loading in the DNA damage response. Interestingly, these two pathways share several features, suggesting a more general mechanism for DNA-repair regulation.  相似文献   

5.
During the DNA damage response (DDR), ubiquitination plays an important role in the recruitment and regulation of repair proteins. However, little is known about elimination of the ubiquitination signal after repair is completed. Here we show that the ubiquitin-specific protease 5 (USP5), a deubiquitinating enzyme, is involved in the elimination of the ubiquitin signal from damaged sites and is required for efficient DNA double-strand break (DSB) repair. Depletion of USP5 sensitizes cells to DNA damaging agents, produces DSBs, causes delayed disappearance of γH2AX foci after Bleocin treatment, and influences DSB repair efficiency in the homologous recombination pathway but not in the non-homologous end joining pathway. USP5 co-localizes to DSBs induced by laser micro-irradiation in a RAD18-dependent manner. Importantly, polyubiquitin chains at sites of DNA damage remained for longer periods in USP5-depleted cells. Our results show that disassembly of polyubiquitin chains by USP5 at sites of damage is important for efficient DSB repair.  相似文献   

6.
DNA double-strand break (DSB) repair occurring in repeated DNA sequences often leads to the generation of chromosomal rearrangements. Homologous recombination normally ensures a faithful repair of DSBs through a mechanism that transfers the genetic information of an intact donor template to the broken molecule. When only one DSB end shares homology to the donor template, conventional gene conversion fails to occur and repair can be channeled to a recombination-dependent replication pathway termed break-induced replication (BIR), which is prone to produce chromosome non-reciprocal translocations (NRTs), a classical feature of numerous human cancers. Using a newly designed substrate for the analysis of DSB–induced chromosomal translocations, we show that Mus81 and Yen1 structure-selective endonucleases (SSEs) promote BIR, thus causing NRTs. We propose that Mus81 and Yen1 are recruited at the strand invasion intermediate to allow the establishment of a replication fork, which is required to complete BIR. Replication template switching during BIR, a feature of this pathway, engenders complex chromosomal rearrangements when using repeated DNA sequences dispersed over the genome. We demonstrate here that Mus81 and Yen1, together with Slx4, also promote template switching during BIR. Altogether, our study provides evidence for a role of SSEs at multiple steps during BIR, thus participating in the destabilization of the genome by generating complex chromosomal rearrangements.  相似文献   

7.
Ubiquitin-conjugating enzymes (UBC) catalyze the covalent attachment of ubiquitin to target proteins and are distinguished by the presence of a UBC domain required for catalysis. Previously identified members of this enzyme family are small proteins and function primarily in selective proteolysis pathways. Here we describe BRUCE (BIR repeat containing ubiquitin-conjugating enzyme), a giant (528-kD) ubiquitin-conjugating enzyme from mice. BRUCE is membrane associated and localizes to the Golgi compartment and the vesicular system. Remarkably, in addition to being an active ubiquitin-conjugating enzyme, BRUCE bears a baculovirus inhibitor of apoptosis repeat (BIR) motif, which to this date has been exclusively found in apoptosis inhibitors of the IAP-related protein family. The BIR motifs of IAP proteins are indispensable for their anti–cell death activity and are thought to function through protein–protein interaction. This suggests that BRUCE may combine properties of IAP-like proteins and ubiquitin-conjugating enzymes and indicates that the family of IAP-like proteins is structurally and functionally more diverse than previously expected.  相似文献   

8.
The cyclin A1-CDK2 complex regulates DNA double-strand break repair   总被引:6,自引:0,他引:6       下载免费PDF全文
Vertebrates express two A-type cyclins; both associate with and activate the CDK2 protein kinase. Cyclin A1 is required in the male germ line, but its molecular functions are incompletely understood. We observed specific induction of cyclin A1 expression and promoter activity after UV and gamma-irradiation which was mediated by p53. cyclin A1-/- cells showed increased radiosensitivity. To unravel a potential role of cyclin A1 in DNA repair, we performed a yeast triple hybrid screen and identified the Ku70 DNA repair protein as a binding partner and substrate of the cyclin A1-CDK2 complex. DNA double-strand break (DSB) repair was deficient in cyclin A1-/- cells. Further experiments indicated that A-type cyclins activate DNA DSB repair by mechanisms that depend on CDK2 activity and Ku proteins. Both cyclin A1 and cyclin A2 enhanced DSB repair by homologous recombination, but only cyclin A1 significantly activated nonhomologous end joining. DNA DSB repair was specific for A-type cyclins because cyclin E was ineffective. These findings establish a novel function for cyclin A1 and CDK2 in DNA DSB repair following radiation damage.  相似文献   

9.
The two BRCT domains (BRCT1 and BRCT2) of XRCC1 mediate a network of protein–protein interactions with several key factors of the DNA single-strand breaks (SSBs) and base damage repair pathways. BRCT1 is required for the immediate poly(ADP–ribose)-dependent recruitment of XRCC1 to DNA breaks and is essential for survival after DNA damage. To better understand the biological role of XRCC1 in the processing of DNA ends, a search for the BRCT1 domain-associated proteins was performed by mass spectrometry of GST-BRCT1 pulled-down proteins from HeLa cell extracts. Here, we report that the double-strand break (DSB) repair heterotrimeric complex DNA-PK interacts with the BRCT1 domain of XRCC1 and phosphorylates this domain at serine 371 after ionizing irradiation. This caused XRCC1 dimer dissociation. The XRCC1 R399Q variant allele did not affect this phosphorylation. We also show that XRCC1 strongly stimulates the phosphorylation of p53-Ser15 by DNA-PK. The pseudo phosphorylated S371D mutant was a much weaker stimulator of DNA-PK activity whereas the non-phosphorylable mutant S371L endowed with a DNA-PK stimulating capacity failed to fully rescue the DSB repair defect of XRCC1-deficient EM9 rodent cells. The functional association between XRCC1 and DNA-PK in response to IR provides the first evidence for their involvement in a common DSB repair pathway.  相似文献   

10.
The detection of a DNA double-strand break (DSB) is necessary to initiate DSB repair. Several proteins, including the MRX/N complex, Tel1/ATM (ataxia telangiectasia mutated), and Mec1/ATR (ATM and Rad3 related), have been proposed as sensors of DNA damage, yet how they recognize the breaks is poorly understood. DSBs occur in the context of chromatin, implicating factors capable of altering local and/or global chromatin structure in the cellular response to DNA damage, including DSB sensing. Emerging evidence indicates that ATP-dependent chromatin-remodeling complexes function in DNA repair. Here we describe an important and novel early role for the RSC ATP-dependent chromatin remodeler linked to DSB sensing in the cell's DNA-damage response. RSC is required for full levels of H2A phosphorylation because it facilitates the recruitment of Tel1/ATM and Mec1/ATR to the break site. Consistent with these results, we also show that Rsc2 is needed for efficient activation of the Rad53-dependent checkpoint, as well as for Cohesin's association with the break site. Finally, Rsc2 is needed for the DNA-damage-induced changes in nucleosome structure surrounding the DSB site. Together, these new findings functionally link RSC to DSB sensing, highlighting the importance of ATP-dependent chromatin-remodeling factors in the cell's early response to DNA damage.  相似文献   

11.
The RAD50/MRE11/NBS1 protein complex (RMN) plays an essential role during the early steps of DNA double-strand break (DSB) repair by homologous recombination. Previous data suggest that one important role for RMN in DSB repair is to provide a link between DNA ends. The striking architecture of the complex, a globular domain from which two extended coiled coils protrude, is essential for this function. Due to its DNA-binding activity, ability to form dimers and interact with both RAD50 and NBS1, MRE11 is considered to be crucial for formation and function of RMN. Here, we show the successful expression and purification of a stable complex containing only RAD50 and NBS1 (RN). The characteristic architecture of the complex was not affected by absence of MRE11. Although MRE11 is a DNA-binding protein it was not required for DNA binding per se or DNA-tethering activity of the complex. The stoichiometry of NBS1 in RMN and RN complexes was estimated by SFM-based volume analysis. These data show that in vitro, R, M and N form a variety of stable complexes with variable subunit composition and stoichiometry, which may be physiologically relevant in different aspects of RMN function.  相似文献   

12.
Non-degradative ubiquitylation plays a crucial role in many cellular signaling pathways, including the DNA damage response. Two ubiquitin ligases, RNF8 and RNF168, in combination with the E2 ubiquitin conjugating enzyme UBC13 catalyze the formation of K63-linked ubiquitin chains at sites of DNA double-strand breaks to promote their faithful repair. However, little is known about their negative regulation. A recent study identifies a deubiquitylating enzyme, OTUB1, which counteracts RNF8/RNF168-dependent ubiquitin chain formation at break sites. Surprisingly, this enzyme carries out its function not by cleavage of polyubiquitin chains, but by targeting UBC13. This non-canonical role for a deubiquitylating enzyme has implications for the regulation of ubiquitylation not just in DNA repair, but potentially in many other cellular signaling processes.  相似文献   

13.
Ubiquitination plays an important role in the DNA damage response. We identified a novel interaction of the E3 ubiquitin ligase RNF8 with Nbs1, a key regulator of DNA double-strand break (DSB) repair. We found that Nbs1 is ubiquitinated both before and after DNA damage and is a direct ubiquitination substrate of RNF8. We also identified key residues on Nbs1 that are ubiquitinated by RNF8. By using laser microirradiation and live-cell imaging, we observed that RNF8 and its ubiquitination activity are important for promoting optimal binding of Nbs1 to DSB-containing chromatin. We also demonstrated that RNF8-mediated ubiquitination of Nbs1 contributes to the efficient and stable binding of Nbs1 to DSBs and is important for HR-mediated DSB repair. Taken together, these studies suggest that Nbs1 is one important target of RNF8 to regulate DNA DSB repair.  相似文献   

14.
The regulation of Ubiquitin (Ub) conjugates generated by the complex network of proteins that promote the mammalian DNA double‐strand break (DSB) response is not fully understood. We show here that the Ub protease POH1/rpn11/PSMD14 resident in the 19S proteasome regulatory particle is required for processing poly‐Ub formed in the DSB response. Proteasome activity is required to restrict tudor domain‐dependent 53BP1 accumulation at sites of DNA damage. This occurs both through antagonism of RNF8/RNF168‐mediated lysine 63‐linked poly‐Ub and through the promotion of JMJD2A retention on chromatin. Consistent with this role POH1 acts in opposition to RNF8/RNF168 to modulate end‐joining DNA repair. Additionally, POH1 acts independently of 53BP1 in homologous recombination repair to promote RAD51 loading. Accordingly, POH1‐deficient cells are sensitive to DNA damaging agents. These data demonstrate that proteasomal POH1 is a key de‐ubiquitinating enzyme that regulates ubiquitin conjugates generated in response to damage and that several aspects of the DSB response are regulated by the proteasome.  相似文献   

15.
Zhu Z  Chung WH  Shim EY  Lee SE  Ira G 《Cell》2008,134(6):981-994
Formation of single-strand DNA (ssDNA) tails at a double-strand break (DSB) is a key step in homologous recombination and DNA-damage signaling. The enzyme(s) producing ssDNA at DSBs in eukaryotes remain unknown. We monitored 5'-strand resection at inducible DSB ends in yeast and identified proteins required for two stages of resection: initiation and long-range 5'-strand resection. We show that the Mre11-Rad50-Xrs2 complex (MRX) initiates 5' degradation, whereas Sgs1 and Dna2 degrade 5' strands exposing long 3' strands. Deletion of SGS1 or DNA2 reduces resection and DSB repair by single-strand annealing between distant repeats while the remaining long-range resection activity depends on the exonuclease Exo1. In exo1Deltasgs1Delta double mutants, the MRX complex together with Sae2 nuclease generate, in a stepwise manner, only few hundred nucleotides of ssDNA at the break, resulting in inefficient gene conversion and G2/M damage checkpoint arrest. These results provide important insights into the early steps of DSB repair in eukaryotes.  相似文献   

16.
DNA double-strand break (DSB) is the most deleterious form of DNA damage and poses great threat to genome stability. Eukaryotes have evolved complex mechanisms to repair DSBs through coordinated actions of protein sensors, transducers, and effectors. DSB-induced small RNAs (diRNAs) or Dicer/Drosha-dependent RNAs (DDRNAs) have been recently discovered in plants and vertebrates, adding an unsuspected RNA component into the DSB repair pathway. DiRNAs/DDRNAs control DNA damage response (DDR) activation by affecting DDR foci formation and cell cycle checkpoint enforcement and are required for efficient DSB repair. Here, we summarize the findings of diRNAs/DDRNAs and discuss the possible mechanisms through which they act to facilitate DSB repair.  相似文献   

17.
Protein ubiquitination is critical for numerous cellular functions, including DNA damage response pathways. Histones are the most abundant monoubiquitin conjugates in mammalian cells; however, the regulation and the function of monoubiquitinated H2A (uH2A) and H2B (uH2B) remain poorly understood. In particular, little is known about mammalian deubiquitinating enzymes (DUBs) that catalyze the removal of ubiquitin from uH2A/uH2B. Here we identify the ubiquitin-specific protease 3 USP3 as a deubiquitinating enzyme for uH2A and uH2B. USP3 dynamically associates with chromatin and deubiquitinates H2A/H2B in vivo. The ZnF-UBP domain of USP3 mediates uH2A-USP3 interaction. Functional ablation of USP3 by RNAi leads to delay of S phase progression and to accumulation of DNA breaks, with ensuing activation of DNA damage checkpoint pathways. In addition, we show that in response to ionizing radiation, (1) uH2A redistributes and colocalizes in gamma-H2AX DNA repair foci and (2) USP3 is required for full deubiquitination of ubiquitin-conjugates/uH2A and gamma-H2AX dephosphorylation. Our studies identify USP3 as a novel regulator of H2A and H2B ubiquitination, highlight its role in preventing replication stress, and suggest its involvement in the response to DNA double-strand breaks. Together, our results implicate USP3 as a novel chromatin modifier in the maintenance of genome integrity.  相似文献   

18.
Long interspersed element-1 (L1) is an autonomous retroelement that is active in the human genome. The proposed mechanism of insertion for L1 suggests that cleavage of both strands of genomic DNA is required. We demonstrate that L1 expression leads to a high level of double-strand break (DSB) formation in DNA using immunolocalization of gamma-H2AX foci and the COMET assay. Similar to its role in mediating DSB repair in response to radiation, ATM is required for L1-induced gamma-H2AX foci and for L1 retrotransposition. This is the first characterization of a DNA repair response from expression of a non-long terminal repeat (non-LTR) retrotransposon in mammalian cells as well as the first demonstration that a host DNA repair gene is required for successful integration. Notably, the number of L1-induced DSBs is greater than the predicted numbers of successful insertions, suggesting a significant degree of inefficiency during the integration process. This result suggests that the endonuclease activity of endogenously expressed L1 elements could contribute to DSB formation in germ-line and somatic tissues.  相似文献   

19.
Timely and proper cellular response to DNA damage is essential for maintenance of genome stability and integrity. B-cell lymphoma/leukemia 10 (BCL10) facilitates ubiquitination of NEMO in the cytosol, activating NFκB signaling. Translocation and/or point mutations of BCL10 associate with mucosa-associated lymphoid tissue lymphomas and other malignancies. However, the mechanisms by which the resulting aberrant expression of BCL10 leads to cellular oncogenesis are poorly understood. In this report, we found that BCL10 in the nucleus is enriched at the DNA damage sites in an ATM- and RNF8-dependent manner. ATM-dependent phosphorylation of BCL10 promotes its interaction with and presentation of UBC13 to RNF8, and RNF8-mediated ubiquitination of BCL10 enhances binding of BCL10 and UBC13 to RNF168. This allows mono-ubiquitination on H2AX by RNF168 and further poly-ubiquitination by the RNF8/RNF168-containing complex. Depletion of BCL10 compromised homology recombination-mediated DNA double-strand break (DSB) repair because of insufficient recruitment of BRCA1, RAD51, and the ubiquitinated DNA damage response factors. Taken together, our results demonstrate a novel function of BCL10 in delivering UBC13 to RNF8/RNF168 to regulate ubiquitination-mediated DSB signaling and repair.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号