首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Recent studies have indicated that the nanoindentation measured stiffness of carcinoma adherent cells is in general lower than normal cells, thus suggesting that cell stiffness may serve as a bio-marker for carcinoma. However, the proper establishment of such a conclusion would require biophysical understanding of the underlying mechanism of the cell stiffness. In this work, we compared the elastic moduli of the actin cytoskeletons of Hey A8 ovarian carcinoma cells with and without metastasis (HM and NM), as measured by 2D atomic force microscopy (AFM) with low-depth nanoindentation via a rate-jump method. The results indicate clearly that HM cells showed lower actin cytoskeleton stiffness atop of their nucleus position and higher actin cytoskeleton stiffness at their rims, compared to NM cells, suggesting that the local stiffness on the cytoskeleton can reflect actin filament distribution. Immunofluorescence staining and scanning electron microscopy (SEM) also indicated that the difference in stiffness in Hey A8 cells with different metastasis is associated with their F-actin rearrangement. Finite-element modelling (FEM) shows that a migrating cell would have its actin filaments bundled together to form stress fibers, which would exhibit lower indentation stiffness than the less aligned arrangement of filaments in a non-migrating cell. The results here indicate that the actin cytoskeleton stiffness can serve as a reliable marker for grading the metastasis of adherent carcinoma cells due to their cytoskeleton change and potentially predicting the migration direction of the cells.  相似文献   

3.
The assembly and organization of the three major eukaryotic cytoskeleton proteins, actin, microtubules, and intermediate filaments, are highly interdependent. Through evolution, cells have developed specialized multifunctional proteins that mediate the cross-linking of these cytoskeleton filament networks. Here we test the hypothesis that two of these filamentous proteins, F-actin and vimentin filament, can interact directly, i.e. in the absence of auxiliary proteins. Through quantitative rheological studies, we find that a mixture of vimentin/actin filament network features a significantly higher stiffness than that of networks containing only actin filaments or only vimentin filaments. Maximum inter-filament interaction occurs at a vimentin/actin molar ratio of 3 to 1. Mixed networks of actin and tailless vimentin filaments show low mechanical stiffness and much weaker inter-filament interactions. Together with the fact that cells featuring prominent vimentin and actin networks are much stiffer than their counterparts lacking an organized actin or vimentin network, these results suggest that actin and vimentin filaments can interact directly through the tail domain of vimentin and that these inter-filament interactions may contribute to the overall mechanical integrity of cells and mediate cytoskeletal cross-talk.  相似文献   

4.
Actin networks in migrating cells exist as several interdependent structures: sheet-like networks of branched actin filaments in lamellipodia; arrays of bundled actin filaments co-assembled with myosin II in lamellae; and actin filaments that engage focal adhesions. How these dynamic networks are integrated and coordinated to maintain a coherent actin cytoskeleton in migrating cells is not known. We show that the large GTPase dynamin2 is enriched in the distal lamellipod where it regulates lamellipodial actin networks as they form and flow in U2-OS cells. Within lamellipodia, dynamin2 regulated the spatiotemporal distributions of α-actinin and cortactin, two actin-binding proteins that specify actin network architecture. Dynamin2''s action on lamellipodial F-actin influenced the formation and retrograde flow of lamellar actomyosin via direct and indirect interactions with actin filaments and a finely tuned GTP hydrolysis activity. Expression in dynamin2-depleted cells of a mutant dynamin2 protein that restores endocytic activity, but not activities that remodel actin filaments, demonstrated that actin filament remodeling by dynamin2 did not depend of its functions in endocytosis. Thus, dynamin2 acts within lamellipodia to organize actin filaments and regulate assembly and flow of lamellar actomyosin. We hypothesize that through its actions on lamellipodial F-actin, dynamin2 generates F-actin structures that give rise to lamellar actomyosin and for efficient coupling of F-actin at focal adhesions. In this way, dynamin2 orchestrates the global actin cytoskeleton.  相似文献   

5.
Retrograde flow of cortical actin networks and bundles is essential for cell motility and retrograde intracellular movement, and for the formation and maintenance of microvilli, stereocilia, and filopodia. Actin cables, which are F-actin bundles that serve as tracks for anterograde and retrograde cargo movement in budding yeast, undergo retrograde flow that is driven, in part, by actin polymerization and assembly. We find that the actin cable retrograde flow rate is reduced by deletion or delocalization of the type II myosin Myo1p, and by deletion or conditional mutation of the Myo1p motor domain. Deletion of the tropomyosin isoform Tpm2p, but not the Tpm1p isoform, increases the rate of actin cable retrograde flow. Pretreatment of F-actin with Tpm2p, but not Tpm1p, inhibits Myo1p binding to F-actin and Myo1p-dependent F-actin gliding. These data support novel, opposing roles of Myo1p and Tpm2 in regulating retrograde actin flow in budding yeast and an isoform-specific function of Tpm1p in promoting actin cable function in myosin-driven anterograde cargo transport.  相似文献   

6.
The microtubule preprophase bands (PPBs) participate in the sequence of events to position cell plates in most plants. However, the mechanism of PPB formation remains to be clarified. In the present study, the organization of PPBs in Arabidopsis suspension cultured cells was investigated by confocal laser scanning microscopy combined with pharmacological treatments of reagents specific for the cytoskeleton elements. Double staining of F-actin and microtubules (MTs) showed that actin filaments were arranged randomly and no colocalization with cortical MTs was observed in the interphase cells. However, cortical actin filaments showed colocalization with MTs during the formation of PPBs. A broad actin band formed with the broad MT band in the initiation of PPB and narrowed down together with the MT band to form the PPB. Nevertheless, broad MT bands were formed but failed to narrow down in cells treated with the F-actin disruptor latrunculin A. In contrast, in the presence of the F-actin stabilizer phalloidin, PPB formation did not exhibit any abnormality. Therefore, the integrity, but not the dynamics, of the actin cytoskeleton is necessary for the formation of normal PPBs. Treatment with 2, 3-butanedine monoxime, a myosin inhibitor, also resulted in the formation of broad MT bands, indicating that actomyosin may be involved in the rearrangement of MTs to form the PPBs. Double staining of MTs and myosin revealed that myosin concentrated on the PPB region during PPB formation. It is suggested that the actin cytoskeleton at the PPB site may serve as a rack to transport cortical MTs by using myosin when the broad MT band narrows down to form the PPB.  相似文献   

7.
《Biophysical journal》2020,118(2):303-312
Muscle contraction is governed by tropomyosin (Tpm) shifting azimuthally between three states on F-actin (B-, C-, and M-states) in response to calcium binding to troponin and actomyosin cross-bridge formation. The Tpm coiled coil polymerizes head to tail along the long-pitch helix of F-actin to form continuous superhelical cables that wrap around the actin filaments. The end-to-end bonds formed between the N- and C-terminus of adjacent Tpm molecules define Tpm continuity and play a critical role in the ability of Tpm to cooperatively bind to actin, thus facilitating Tpm conformational switching to cooperatively propagate along F-actin. We expect that a missense mutation in this critical overlap region associated with dilated cardiomyopathy, A277V, will alter Tpm binding and thin filament activation by altering the overlap structure. Here, we used cosedimentation assays and in vitro motility assays to determine how the mutation alters Tpm binding to actin and its ability to regulate actomyosin interactions. Analytical viscometry coupled with molecular dynamics simulations showed that the A277V mutation results in enhanced Tpm end-to-end bond strength and a reduced curvature of the Tpm overlap domain. The mutant Tpm exhibited enhanced actin-Tpm binding affinity, consistent with overlap stabilization. The observed A277V-induced decrease in cooperative activation observed with regulated thin filament motility indicates that increased overlap stabilization is not correlated with Tpm-Tpm overlap binding strength or mechanical rigidity as is often assumed. Instead, A277V-induced structural changes result in local and delocalized increases in Tpm flexibility and prominent coiled-coil twisting in pseudorepeat 4. An A277V-induced decrease in Ca2+ sensitivity, consistent with a mutation-induced bolstering of the B-state Tpm-actin electrostatic contacts and an increased Tpm troponin T1 binding affinity, was also observed.  相似文献   

8.
This study reports actin phosphorylation and coincident actin cytoskeleton alterations in renal epithelial cell line, LLC-PK1. Serine phosphorylation of actin was first observed in vitro after the cell lysate was incubated with phosphatase inhibitors and ATP. Both the phosphorylated actin and actin kinase activities were found in the cytoskeletal fraction. Actin phosphorylation was later detected in living LLC-PK1 cells after incubation with the phosphatase inhibitor calyculin A. Calyculin A-induced actin phosphorylation was associated with reorganization of the actin cytoskeleton, including net actin depolymerization, loss of cell-cell junction and stress fiber F-actin filaments, and redistribution of F-actin filaments in the periphery of the rounded cells. Actin phosphorylation was abolished by 3-h ATP depletion but not by the non-specific kinase inhibitor staurosporine. These results demonstrate that renal epithelial cells contain kinase/phosphatase activities and actin can be phosphorylated in LLC-PK1 cells. Actin phosphorylation may play an important role in regulating the organization of the actin cytoskeleton in renal epithelium.  相似文献   

9.
Caldesmon (CaD), a component of microfilaments in all cells and thin filaments in smooth muscle cells, is known to bind to actin, tropomyosin, calmodulin, and myosin and to inhibit actin-activated ATP hydrolysis by smooth muscle myosin. Thus, it is believed to regulate smooth muscle contraction, cell motility and the cytoskeletal structure. Using bladder smooth muscle cell cultures and RNA interference (RNAi) technique, we show that the organization of actin into microfilaments in the cytoskeleton is diminished by siRNA-mediated CaD silencing. CaD silencing significantly decreased the amount of polymerized actin (F-actin), but the expression of actin was not altered. Additionally, we find that CaD is associated with 10 nm intermediate-sized filaments (IF) and in vitro binding assay reveals that it binds to vimentin and desmin proteins. Assembly of vimentin and desmin into IF is also affected by CaD silencing, although their expression is not significantly altered when CaD is silenced. Electronmicroscopic analyses of the siRNA-treated cells showed the presence of myosin filaments and a few surrounding actin filaments, but the distribution of microfilament bundles was sparse. Interestingly, the decrease in CaD expression had no effect on tubulin expression and distribution of microtubules in these cells. These results demonstrate that CaD is necessary for the maintenance of actin microfilaments and intermediate-sized filaments in the cytoskeletal structure. This finding raises the possibility that the cytoskeletal structure in smooth muscle is affected when CaD expression is altered, as in smooth muscle de-differentiation and hypertrophy seen in certain pathological conditions.  相似文献   

10.
Cofilin is a key regulator of the actin cytoskeleton. It can sever actin filaments, accelerate filament disassembly, act as a nucleation factor, recruit or antagonize other actin regulators, and control the pool of polymerization-competent actin monomers. In cells these actions have complex functional outputs. The timing and localization of cofilin activity are carefully regulated, and thus global, long-term perturbations may not be sufficient to probe its precise function. To better understand cofilin''s spatiotemporal action in cells, we implemented chromophore-assisted laser inactivation (CALI) to instantly and specifically inactivate it. In addition to globally inhibiting actin turnover, CALI of cofilin generated several profound effects on the lamellipodia, including an increase of F-actin, a rearward expansion of the actin network, and a reduction in retrograde flow speed. These results support the hypothesis that the principal role of cofilin in lamellipodia at steady state is to break down F-actin, control filament turnover, and regulate the rate of retrograde flow.  相似文献   

11.
The actin cytoskeleton is a soft, structural material that underlies biological processes such as cell division, motility, and cargo transport. The cross-linked actin filaments self-organize into a myriad of architectures, from disordered meshworks to ordered bundles, which are hypothesized to control the actomyosin force generation that regulates cell migration, shape, and adhesion. Here, we use fluorescence microscopy and simulations to investigate how actin bundle architectures with varying polarity, spacing, and rigidity impact myosin II dynamics and force generation. Microscopy reveals that mixed-polarity bundles formed by rigid cross-linkers support slow, bidirectional myosin II filament motion, punctuated by periods of stalled motion. Simulations reveal that these locations of stalled myosin motion correspond to sustained, high forces in regions of balanced actin filament polarity. By contrast, mixed-polarity bundles formed by compliant, large cross-linkers support fast, bidirectional motion with no traps. Simulations indicate that trap duration is directly related to force magnitude and that the observed increased velocity corresponds to lower forces resulting from both the increased bundle compliance and filament spacing. Our results indicate that the microstructures of actin assemblies regulate the dynamics and magnitude of myosin II forces, highlighting the importance of architecture and mechanics in regulating forces in biological materials.  相似文献   

12.
Myosin heavy-chain kinase A (MHCK A) catalyses the disassembly of myosin II filaments in Dictyostelium cells via myosin II heavy-chain phosphorylation. MHCK A possesses a 'coiled-coil'-enriched domain that mediates the oligomerization, cellular localization and actin-binding activities of the kinase. F-actin (filamentous actin) binding by the coiled-coil domain leads to a 40-fold increase in MHCK A activity. In the present study we examined the actin-binding characteristics of the coiled-coil domain as a means of identifying mechanisms by which MHCK A-mediated disassembly of myosin II filaments can be regulated in the cell. Co-sedimentation assays revealed that the coiled-coil domain of MHCK A binds co-operatively to F-actin with an apparent K(D) of approx. 0.5 muM and a stoichiometry of approx. 5:1 [actin/C(1-498)]. Further analyses indicate that the coiled-coil domain binds along the length of the actin filament and possesses at least two actin-binding regions. Quite surprisingly, we found that the coiled-coil domain cross-links actin filaments into bundles, indicating that MHCK A can affect the cytoskeleton in two important ways: (1) by driving myosin II-filament disassembly via myosin II heavy-chain phosphorylation, and (2) by cross-linking/bundling actin filaments. This discovery, along with other supporting data, suggests a model in which MHCK A-mediated bundling of actin filaments plays a central role in the recruitment and activation of the kinase at specific sites in the cell. Ultimately this provides a means for achieving the robust and highly localized disruption of myosin II filaments that facilitates polarized changes in cell shape during processes such as chemotaxis, cytokinesis and multicellular development.  相似文献   

13.
This study extends the observations on the defects in pseudopod formation of ABP-120+ and ABP-120- cells by a detailed morphological and biochemical analysis of the actin based cytoskeleton. Both ABP-120+ and ABP-120- cells polymerize the same amount of F-actin in response to stimulation with cAMP. However, unlike ABP-120+ cells, ABP-120- cells do not incorporate actin into the Triton X-100-insoluble cytoskeleton at 30-50 s, the time when ABP-120 is incorporated into the cytoskeleton and when pseudopods are extended after cAMP stimulation in wild-type cells. By confocal and electron microscopy, pseudopods extended by ABP- 120- cells are not as large or thick as those produced by ABP-120+ cells and in the electron microscope, an altered filament network is found in pseudopods of ABP-120- cells when compared to pseudopods of ABP-120+ cells. The actin filaments found in areas of pseudopods in ABP- 120+ cells either before or after stimulation were long, straight, and arranged into space filling orthogonal networks. Protrusions of ABP-120- cells are less three-dimensional, denser, and filled with multiple foci of aggregated filaments consistent with collapse of the filament network due to the absence of ABP-120-mediated cross-linking activity. The different organization of actin filaments may account for the diminished size of protrusions observed in living and fixed ABP-120- cells compared to ABP-120+ cells and is consistent with the role of ABP- 120 in regulating pseudopod extension through its cross-linking of actin filaments.  相似文献   

14.
To identify regulatory mechanisms potentially involved in formation of actomyosin structures in smooth muscle cells, the influence of F-actin on smooth muscle myosin assembly was examined. In physiologically relevant buffers, AMPPNP binding to myosin caused transition to the soluble 10S myosin conformation due to trapping of nucleotide at the active sites. The resulting 10S myosin-AMPPNP complex was highly stable and thick filament assembly was suppressed. However, upon addition to F-actin, myosin readily assembled to form thick filaments. Furthermore, myosin assembly caused rearrangement of actin filament networks into actomyosin fibers composed of coaligned F-actin and myosin thick filaments. Severin-induced fragmentation of actin in actomyosin fibers resulted in immediate disassembly of myosin thick filaments, demonstrating that actin filaments were indispensable for mediating myosin assembly in the presence of AMPPNP. Actomyosin fibers also formed after addition of F-actin to nonphosphorylated 10S myosin monomers containing the products of ATP hydrolysis trapped at the active site. The resulting fibers were rapidly disassembled after addition of millimolar MgATP and consequent transition of myosin to the soluble 10S state. However, reassembly of myosin filaments in the presence of MgATP and F-actin could be induced by phosphorylation of myosin P-light chains, causing regeneration of actomyosin fiber bundles. The results indicate that actomyosin fibers can be spontaneously formed by F-actin-mediated assembly of smooth muscle myosin. Moreover, induction of actomyosin fibers by myosin light chain phosphorylation in the presence of actin filament networks provides a plausible hypothesis for contractile fiber assembly in situ.  相似文献   

15.
Summary Changes in F-actin organization following mechanical isolation ofZinnia mesophyll cells were documented by rhodamine-phalloidin staining. Immediately after isolation, most cells contained irregular cortical actin fragments of varying lengths, and less than 5% of cells contained intact cortical filaments. During the first 8 h of culture, filament fragments were replaced by actin rings, stellate actin aggregates, and bundled filament fragments. Some of these aggregates had no association with organelles (free actin aggregates). Other aggregates were associated with chloroplasts, which changed in shape and location at the same time actin aggregates appeared. F-actin was concentrated within or around the nucleus in a small percentage of cells. After 12 h in culture, the percentage of cells with free actin rings and chloroplast-associated actin aggregates began to decline and the percentage of cells having intact cortical actin filaments increased greatly. Intermediate images were recorded that strongly indicate that free actin rings, chloroplast-associated actin rings, and other actin aggregates self-assemble by successive bundling of actin filament fragments. The fragmentation and bundling of F-actin observed in mechanically isolatedZinnia cells resembles changes in F-actin distribution reported after diverse forms of cell disturbance and appears to be an example of a generalized response of the actin cytoskeleton to cell stress.Abbreviations FITC fluorescein isothiocyanate - MBS m-maleimidobenzoic acid N-hydroxysuccinimide ester - RhPh tetramethylrhodamine isothiocyanate-phalloidin  相似文献   

16.
《The Journal of cell biology》1994,126(4):1005-1015
Rat peritoneal mast cells, both intact and permeabilized, have been used widely as model secretory cells. GTP-binding proteins and calcium play a major role in controlling their secretory response. Here we have examined changes in the organization of actin filaments in intact mast cells after activation by compound 48/80, and in permeabilized cells after direct activation of GTP-binding proteins by GTP-gamma-S. In both cases, a centripetal redistribution of cellular F-actin was observed: the content of F-actin was reduced in the cortical region and increased in the cell interior. The overall F-actin content was increased. Using permeabilized cells, we show that AIF4-, an activator of heterotrimeric G proteins, induces the disassembly of F-actin at the cortex, while the appearance of actin filaments in the interior of the cell is dependent on two small GTPases, rho and rac. Rho was found to be responsible for de novo actin polymerization, presumably from a membrane-bound monomeric pool, while rac was required for an entrapment of the released cortical filaments. Thus, a heterotrimeric G-protein and the small GTPases, rho and rac, participate in affecting the changes in the actin cytoskeleton observed after activation of mast cells.  相似文献   

17.
Cytoskeletal proteins are major components of the cell backbone and regulate cell shape and function. The purpose of this study was to investigate the effect of lipopolysaccharide (LPS) on the dynamics and organization of the cytoskeletal proteins, actin, vimentin, tubulin and vinculin in human small intestinal lamina propria fibroblasts (HSILPF). A noticeable change in the actin architecture was observed after 30 min incubation with LPS with the formation of orthogonal fibers and further accumulation of actin filament at the cell periphery by 2 h. Reorganization of the vimentin network into vimentin bundling was conspicuous at 2 h. With further increase in the time period of LPS exposure, diffused staining of vimentin along with vimentin bundling was observed. Vinculin plaques distributed in the cell body and cell periphery in the control cells rearrange to cell periphery in LPS-treated cells by 30 min of LPS exposure. However, there was no change in the tubulin architecture in HSILPF in response to LPS. LPS increased the F-actin pool in HSILPF in a concentration-dependent manner with no difference in the level of G-actin. A time-dependent study depicted an increase in the G-actin pool at 10 and 20 min of LPS exposure followed by a decrease at further time intervals. The F-actin pool in LPS-treated cells was lower than the control levels at 10 and 20 min of LPS exposure followed by a sharp increase until 120 min and finally returning to the basal level at 140 and 160 min. Further (35)S-methionine incorporation studies suggested a new pool of actin synthesis, whereas the synthesis of other cytoskeletal filaments was not altered. Cytochalasin B, an actin-disrupting agent, severely affected the LPS induced increased percentage of 'S' phase cells and IL-6 synthesis in HSILPF. We conclude that dynamic and orchestrated organization of the cytoskeletal filaments and actin assembly in response to LPS may be a prime requirement for the LPS induced increase in percentage of 'S' phase cells and IL-6 synthesis  相似文献   

18.
Profilin is a well-characterized protein known to be important for regulating actin filament assembly. Relatively few studies have addressed how profilin interacts with other actin-binding proteins in vivo to regulate assembly of complex actin structures. To investigate the function of profilin in the context of a differentiating cell, we have studied an instructive genetic interaction between mutations in profilin (chickadee) and capping protein (cpb). Capping protein is the principal protein in cells that caps actin filament barbed ends. When its function is reduced in the Drosophila bristle, F-actin levels increase and the actin cytoskeleton becomes disorganized, causing abnormal bristle morphology. chickadee mutations suppress the abnormal bristle phenotype and associated abnormalities of the actin cytoskeleton seen in cpb mutants. Furthermore, overexpression of profilin in the bristle mimics many features of the cpb loss-of-function phenotype. The interaction between cpb and chickadee suggests that profilin promotes actin assembly in the bristle and that a balance between capping protein and profilin activities is important for the proper regulation of F-actin levels. Furthermore, this balance of activities affects the association of actin structures with the membrane, suggesting a link between actin filament dynamics and localization of actin structures within the cell.  相似文献   

19.
The visualization of green fluorescent protein (GFP) fusions with microtubule or actin filament (F-actin) binding proteins has provided new insights into the function of the cytoskeleton during plant development. For studies on actin, GFP fusions to talin have been the most generally used reporters. Although GFP-Talin has allowed in vivo F-actin imaging in a variety of plant cells, its utility in monitoring F-actin in stably transformed plants is limited particularly in developing roots where interesting actin dependent cell processes are occurring. In this study, we created a variety of GFP fusions to Arabidopsis Fimbrin 1 (AtFim1) to explore their utility for in vivo F-actin imaging in root cells and to better understand the actin binding properties of AtFim1 in living plant cells. Translational fusions of GFP to full-length AtFim1 or to some truncated variants of AtFim1 showed filamentous labeling in transient expression assays. One truncated fimbrin-GFP fusion was capable of labeling distinct filaments in stably transformed Arabidopsis roots. The filaments decorated by this construct were highly dynamic in growing root hairs and elongating root cells and were sensitive to actin disrupting drugs. Therefore, the fimbrin-GFP reporters we describe in this study provide additional tools for studying the actin cytoskeleton during root cell development. Moreover, the localization of AtFim1-GFP offers insights into the regulation of actin organization in developing roots by this class of actin cross-linking proteins.  相似文献   

20.
Regulation of non-muscle myosin structure and function   总被引:11,自引:0,他引:11  
In vertebrate and invertebrate nonmuscle myosins, light- and heavy-chain phosphorylation regulate myosin assembly into filaments, and interaction with actin. Vertebrate non-muscle myosins can exist in vitro in three main states, either ‘folded’ (assembly-blocked) or ‘extended’ (assembly-competent) monomers, and filaments. Light-chain phosphorylation regulates the ‘dynamic equilibrium’ between these states. The ability of the myosin to undergo changes in conformation and state of assembly may be an important mechanism in regulating the organization of the cytoskeleton and cell motility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号