首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8645篇
  免费   666篇
  国内免费   648篇
  2023年   102篇
  2022年   135篇
  2021年   483篇
  2020年   293篇
  2019年   371篇
  2018年   377篇
  2017年   300篇
  2016年   366篇
  2015年   565篇
  2014年   683篇
  2013年   701篇
  2012年   828篇
  2011年   717篇
  2010年   430篇
  2009年   401篇
  2008年   461篇
  2007年   377篇
  2006年   292篇
  2005年   245篇
  2004年   191篇
  2003年   184篇
  2002年   160篇
  2001年   144篇
  2000年   128篇
  1999年   106篇
  1998年   71篇
  1997年   83篇
  1996年   79篇
  1995年   58篇
  1994年   47篇
  1993年   45篇
  1992年   63篇
  1991年   49篇
  1990年   49篇
  1989年   33篇
  1988年   39篇
  1987年   26篇
  1986年   23篇
  1985年   36篇
  1984年   33篇
  1983年   14篇
  1982年   15篇
  1981年   8篇
  1979年   7篇
  1978年   11篇
  1974年   11篇
  1973年   7篇
  1971年   9篇
  1967年   7篇
  1966年   9篇
排序方式: 共有9959条查询结果,搜索用时 15 毫秒
991.
In seeking evidence of the existence of adaptive immune system (AIS) in ancient chordate, cDNA clones of six libraries from a protochordate, the Chinese amphioxus, were sequenced. Although the key molecules such as TCR, MHC, Ig, and RAG in AIS have not been identified from our database, we demonstrated in this study the extensive molecular evidence for the presence of genes homologous to many genes that are involved in AIS directly or indirectly, including some of which may represent the putative precursors of vertebrate AIS-related genes. The comparative analyses of these genes in different model organisms revealed the different fates of these genes during evolution. Their gene expression pattern suggested that the primitive digestive system is the pivotal place of the origin and evolution of the AIS. Our studies support the general statement that AIS appears after the jawless/jawed vertebrate split. However our study further reveals the fact that AIS is in its twilight in amphioxus and the evolution of the molecules in amphioxus are waiting for recruitment by the emergence of AIS.  相似文献   
992.
The MAPKK Byr1 is an essential component of a Ras-dependent MAPK module required for sexual differentiation in the fission yeast, Schizosaccharomyces pombe. Here we describe the genetic and molecular characterization of a highly conserved protein, Bob1, which was identified from a two-hybrid screen for Byr1-interacting proteins. Byrl and Bobl proteins coprecipitate from S. pombe cell lysates, and both proteins localize to the tips and septa of S. pombe cells. S. pombe bob1 null (bob1delta) mutants lack obvious growth defects but exhibit a significant mating deficiency, which can be suppressed by overexpression of Byrl. Overexpression of Bob1 also leads to inhibition of mating in S. pombe, and this defect is likewise suppressed by Byrl overexpression. Bob1 is highly homologous in structure to the mammalian MM-1/Pfd5 and budding yeast Gim5/Pfd5-Sc proteins, which have been implicated as regulators of actin and tubulins. Similar to budding yeast gim5/pfd5-Sc mutants, S. pombe bob1delta cells have cytoskeletal defects, as judged by hypersensitivity to cytoskeletal disrupting drugs. byr1delta mutants do not share this characteristic with bob1delta mutants, and byr1delta bob1delta mutants are not significantly more sensitive to cytoskeletal disrupting drugs than cells carrying only the bob1delta mutation. Taken together, our results suggest that Bob1 has Byr1-related function(s) required for proper mating response of S. pombe cells and Byrl-independent function(s) required for normal cytoskeletal control. We show that the human MM-1/Pfd5 protein can substitute for its counterpart in fission yeast, providing evidence that the functions of Bob1-related proteins have been highly conserved through evolution. Our results lead us to propose that Bob1-related proteins may play diverse roles in eukaryotic organisms.  相似文献   
993.
Gu G  Wei G  Du Y 《Carbohydrate research》2004,339(6):1155-1162
An efficient and convergent synthesis of a regioselectively 6(V)-sulfated mannopentasaccharide derivative 1c, octyl 6-O-sulfo-alpha-D-mannopyranosyl-(1-->3)-alpha-D-mannopyranosyl-(1-->3)-alpha-d-mannopyranosyl-(1-->3)-alpha-D-mannopyranosyl-(1-->2)-alpha-D-mannopyranoside, was achieved by a '3 + 2' strategy. The target was designed to mimic the promising anticancer agent PI-88 and was obtained from the building blocks, octyl 3,4,6-tri-O-benzoyl-alpha-D-mannopyranoside, allyl 2,4,6-tri-O-benzoyl-3-O-(4-methoxybenzyl)-alpha-D-mannopyranoside, and 6-O-acetyl-2,3,4-tri-O-benzoyl-alpha-D-mannopyranosyl trichloroacetimidate (11), under TMSOTf-catalyzed glycosylation conditions. Compound 1c displays a mild anti-angiogenic activity based on a chorioallantoic membrane (CAM) model study.  相似文献   
994.
Shi Y  Zhai H  Wang X  Han Z  Liu C  Lan M  Du J  Guo C  Zhang Y  Wu K  Fan D 《Experimental cell research》2004,296(2):337-346
Ribosomal proteins (RP) S13 and RPL23 were previously identified as two upregulated genes in a multidrug-resistant gastric cancer cell line SGC7901/VCR compared to its parental cell SGC7901 by differential display PCR. The aim of this study was to explore the roles of RPS13 and RPL23 in multidrug resistance (MDR) in gastric cancer cells. RPS13 and RPL23 were genetically overexpressed in SGC7901 cells, respectively. Either RPS13 or RPL23 enhanced resistance of SGC7901 cells to vincristine, adriamycin, and 5-fludrouracil. RPL23 also enhanced resistance of SGC7901 cells to cisplatin. Overexpression of either RPS13 or RPL23 did not alter the population doubling time, [3H]leucine incorporation, and intracellular adriamycin accumulation of SGC7901 cells. However, either RPS13 or RPL23 could protect SGC7901 cells from undergoing vincristine-induced apoptosis. Western blot analysis revealed that both RPS13 and RPL23 significantly increased the expression level of Bcl-2 and Bcl-2/Bax ratio in SGC7901 cells. In addition, overexpression of RPL23 enhanced glutathione S-transferase (GST) activity and intracellular glutathione content in SGC7901 cells. Together, this work demonstrates that either RPS13 or RPL23 can promote MDR in gastric cancer cells by suppressing drug-induced apoptosis, and that RPL23 may also promote MDR in gastric cancer cells through regulation of glutathione S-transferase-mediated drug-detoxifying system.  相似文献   
995.
Endothelial cell-selective adhesion molecule (ESAM) is an immunoglobulin-like transmembrane protein associated with endothelial tight junctions (TJ). Based on a yeast two-hybrid screen, we have identified the membrane-associated guanylate kinase protein MAGI-1 as an intracellular binding partner of ESAM. MAGI-1 is a multidomain adaptor protein, which binds to transmembrane, cytoskeletal, and signaling molecules, and has been localized to tight junctions in epithelial cells. MAGI-1 associates with the very C-terminal sequence of ESAM most likely through a PDZ domain-mediated interaction. The direct interaction between ESAM and MAGI-1 was confirmed by pull-down experiments. The two proteins formed stable complexes in transfected Chinese hamster ovary (CHO) cells, which could be immunoisolated. We found MAGI-1 to be associated with cell-cell contacts in human umbilical vein endothelial cells (HUVECs) and in mouse endothelium, where it colocalizes with ESAM. In CHO cells, recruitment of MAGI-1 to cell contacts required the presence of ESAM. Hence, ESAM may be involved in anchoring MAGI-1 at endothelial tight junctions.  相似文献   
996.
997.
Du Z  Ulyanov NB  Yu J  Andino R  James TL 《Biochemistry》2004,43(19):5757-5771
The 5'-untranslated region of positive-strand RNA viruses harbors many cis-acting RNA structural elements that are important for various viral processes such as replication, translation, and packaging of new virions. Among these is loop B RNA of the stem-loop IV domain within the internal ribosomal entry site (IRES) of enteroviruses, including Poliovirus type 1 (PV1). Studies on PV1 have shown that specific recognition of loop B by the first KH (hnRNP K homology) domain of cellular poly(rC)-binding protein 2 (PCBP2) is essential for efficient translation of the viral mRNA. Here we report the NMR solution structures of two representative sequence variants of enteroviral loop B RNA. The two RNA variants differ at only one position (C vs U) within a six-nucleotide asymmetric internal loop sequence that is the binding site for the PCBP2 KH1 domain. Surprisingly, the two RNAs are drastically different in the overall shape and local dynamics of the bulge region. The RNA with the 5'-AUCCCU bulge sequence adopts an overall L shape. Its bulge nucleotides, especially the last four, are highly flexible and not very well defined by NMR. The RNA with the 5'-AUUCCU bulge sequence adopts an overall U shape, and its bulge sequence exhibits only limited flexibility. A detailed analysis of the two RNA structures and their dynamic properties, as well as available sequence data and known KH domain-RNA complex structures, not only provides insights into how loop B RNA might be recognized by the PCBP2 KH1 domain but also suggests a possible correlation between structural flexibility and pre-existing structural features for protein recognition.  相似文献   
998.
Zhou D  Tong Z  Song Y  Han Y  Pei D  Pang X  Zhai J  Li M  Cui B  Qi Z  Jin L  Dai R  Du Z  Wang J  Guo Z  Wang J  Huang P  Yang R 《Journal of bacteriology》2004,186(15):5147-5152
Yersinia pestis has been historically divided into three biovars: antiqua, mediaevalis, and orientalis. On the basis of this study, strains from Microtus-related plague foci are proposed to constitute a new biovar, microtus. Based on the ability to ferment glycerol and arabinose and to reduce nitrate, Y. pestis strains can be assigned to one of four biovars: antiqua (glycerol positive, arabinose positive, and nitrate positive), mediaevalis (glycerol positive, arabinose positive, and nitrate negative), orientalis (glycerol negative, arabinose positive, and nitrate positive), and microtus (glycerol positive, arabinose negative, and nitrate negative). A 93-bp in-frame deletion in glpD gene results in the glycerol-negative characteristic of biovar orientalis strains. Two kinds of point mutations in the napA gene may cause the nitrate reduction-negative characteristic in biovars mediaevalis and microtus, respectively. A 122-bp frameshift deletion in the araC gene may lead to the arabinose-negative phenotype of biovar microtus strains. Biovar microtus strains have a unique genomic profile of gene loss and pseudogene distribution, which most likely accounts for the human attenuation of this new biovar. Focused, hypothesis-based investigations on these specific genes will help delineate the determinants that enable this deadly pathogen to be virulent to humans and give insight into the evolution of Y. pestis and plague pathogenesis. Moreover, there may be the implications for development of biovar microtus strains as a potential vaccine.  相似文献   
999.
Luo XL  Xu JJ  Du Y  Chen HY 《Analytical biochemistry》2004,334(2):284-289
An amperometric biosensor for the quantitative measurement of glucose is reported. The biosensor is based on a biocomposite that is homogeneous and easily prepared. This biocomposite is made of chitosan hydrogel, glucose oxidase, and gold nanoparticles by a direct and facile electrochemical deposition method under enzyme-friendly conditions. The resulting biocomposite provided a shelter for the enzyme to retain its bioactivity at considerably extreme conditions, and the decorated gold nanoparticles in the biocomposite offer excellent affinity to enzyme. The biosensor exhibited a rapid response (within 7s) and a linear calibration range from 5.0 microM to 2.4 mM with a detection limit of 2.7 microM for the detection of glucose. The combination of gold nanoparticles affinity and the promising feature of the biocomposite with the onestep nonmanual technique favor the sensitive determination of glucose with improved analytical capabilities.  相似文献   
1000.
Beta-catenin has been implicated in epilepsy because of its altered post seizure expression and the role of Wnt2 signaling in autism. To determine beta-catenin's role in seizure susceptibility, we injected penetylenetetrazol intraperitoneally in beta-catenin cerebral cortex- and hippocampus-specific knockout mice. We then analyzed the latency, number, and duration of four phases of seizure behaviors: (I) non-seizure activity, (II) myoclonic jerks, (III) generalized clonic seizures, and (IV) tonic seizures. The latencies to both death and Phase IV were significantly reduced in mutant mice. Mutant mice also spent significantly more time in Phases III and IV and showed significantly less time in the non-convulsive state (Phase I). Nissl and gold chloride staining indicated that the knockout mice had underdeveloped cortices, lacked a corpus callosum, and were missing hippocampal structures. This suggests that dysfunction of beta-catenin-mediated signaling pathways in mice leads to cortical malformation and increased seizure susceptibility.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号