首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 316 毫秒
1.
发育期细胞和细胞外基质(extracellular matrix,ECM)之间的相互作用调节着细胞的功能,包括细胞的迁移、细胞骨架的构建、细胞的增值和分化。神经元“移居”体外后,失去了在体内所依托的组织学关系,必须黏附于一个固相表面才能生存,所以神经元只有在包被基质的培养器皿上才能存活,  相似文献   

2.
目前,国内外针对骨髓基质细胞(BMSC)在体外分化成神经元样细胞所采用的诱导剂主要有抗氧化剂和生长因子等。其中β-巯基乙醇是国内外公认的抗氧化剂,大量的体外实验证明其能诱导骨髓基质细胞分化为神经元样细胞。  相似文献   

3.
目的 探讨大鼠骨髓基质干细胞的提取、分离培养和体外扩增的最佳条件,研究其在体外培养中定向诱导分化为神经元样细胞的可能。方法 通过密度梯度离心和贴壁培养法从成年大鼠骨髓中分离骨髓基质干细胞,进行培养扩增,观察其生长特性;用2-巯基乙醇(β-mercaptoethanol,β-ME)对传代细胞诱导分化,并通过免疫细胞化学染色鉴定分化细胞的类型。结果 原代培养时形成由基质干细胞组成的细胞集落,细胞集落14d时接近融合,传代后,细胞体积变大,约5~7d传代一次。β-ME诱导后,70%以上的细胞在形态上呈神经元样,免疫细胞化学染色呈NSE阳性,GFAP阴性,说明诱导分化的细胞为神经元,而不是星形胶质细胞。结论 骨髓基质干细胞在体外培养条件下生长良好,并可连续传代;在β-ME作用下可被诱导分化为神经元样细胞。  相似文献   

4.
分离新生Wistar鼠海马,采用添加B27的无血清培养液进行海马神经元原代培养,动态观察海马神经元形态学变化;通过免疫荧光细胞化学法检测神经纤丝(NF)的表达,进行神经元鉴定及纯度计算;采用电位敏感的荧光探针标记神经元,在激光扫描共聚焦显微镜上动态监测去极化剂KCl作用前后膜电位的变化,观察神经元电生理反应。结果表明:此方法培养的大鼠海马神经元可在体外存活20天以上,9~14天为发育最成熟阶段,培养7天神经元纯度达90%。KCl作用于细胞后胞内荧光强度增强,细胞迅速去极化。本培养方法在体外获得高纯度的海马神经元并延长体外存活时间,且显示出神经元的电生理反应特性。  相似文献   

5.
回转器旋转对体外培养的鸡胚神经元的影响   总被引:2,自引:1,他引:1  
用回转器旋转研究重力改变对体外培养的鸡胚神经元的影响。结果发现在回转器里经过7-9小时的处理后,神经元的形态和行为发生明显改变。只有6.3%的神经元呈现两极型的运动形态,而对照组正常培养的细胞运动形态的神经元占34.2%。某些细胞的突起出现异常,呈现扭曲的形状。在培养基质上的神经元伸出许多丝状突起,丝状突起的末端锚定在周围的细胞上或锚定在培养基质上。经过重力改变处理的细胞重新放在相差显微镜下观察,结果显示神经元的运动活性降低,许多细胞没有观察到明显运动的迹象。  相似文献   

6.
目的探讨大鼠部分肝切后血清对体外培养肝细胞生长状况的影响。方法对Sprague-Dawley大鼠进行肝部分切除,分别在术后第12、24、36h于心腔内穿刺取血,制备刺激血清。采用酶消化法分离获取Sprague-Dawley乳鼠的肝细胞,在加有10%上述刺激血清的DMEM培养基中进行肝细胞体外培养。倒置显微镜下观察培养细胞的生长状态,采用免疫细胞化学方法检测肝细胞中白蛋白和纤维蛋白原的表达情况。结果发现在肝切后血清刺激作用下,原代培养的肝细胞生长加快,存活时间增长。细胞传代培养后仍用制备血清加以刺激,可产生胶原样细胞外基质,并且在基质上粘附的肝细胞呈现克隆样生长状态,其胞浆内白蛋白和纤维蛋白原均呈阳性表达。结论研究初步表明,体外培养乳鼠肝细胞时加入大鼠部分肝切后血清,可以有效刺激细胞的生长,促进细胞外基质的产生,从而利于肝细胞在体外较长时间存活、增殖和功能保持,同时此种肝细胞体外培养方式还为肝脏细胞生物学研究增添了新的实验途径。  相似文献   

7.
脊髓内源性物质对脊髓神经元在体外存活的影响   总被引:3,自引:0,他引:3  
神经元在体外的存活是衡量一种营养因子有无神经营养作用的重要指标之一。我们用人胚制备脊髓提取液,并用Centricon(Millipo-re)将粗提取液分成<10KD、10-30KD及>30KD三种组份,研究了粗提取液及这三种组份对体外培养中的脊髓神经元存活的影响,结果表明加粗提取液及<10KD的实验组比对照组活性要好,表现在线粒体中琥珀酸脱氢酶活性高(MTT法),神经元中NSE活性高(NSE-ELISA法)及细胞生长合成的总蛋白的量高等方面。但以<10KD组份对细胞的促活作用最强,与对照组相比有显著性差异。以上结果显示人胚脊髓中存在对脊髓神经元有促进存活的物质。  相似文献   

8.
早在 1997年 ,Barres等就报道过胶质细胞可以促进突触间的联系。与胶质细胞共同生长的神经元突触的活跃程度是独自生长的神经元的 10倍。他们推测 ,胶质细胞在某种程度上放大了神经元发出的信号或者提高了神经元接受信号的敏感度。后来 ,Barres实验室又选定视网膜神经节细胞为实验对象 ,这些神经元细胞在体外可以不依赖胶质细胞而存活。结果表明 ,这些神经元生长在胶质细胞周围 ,即使没有接触到胶质细胞 ,对多种刺激的反应程度也比那些独自生长的神经元要强出 7倍。研究组还发现了几种与突触建立相关的蛋白质 ,同样 ,前者聚集蛋…  相似文献   

9.
人酸性成纤维细胞生长因子神经营养作用的初步研究   总被引:1,自引:0,他引:1  
本实验研究了人酸性成纤维细胞生长因子(haFGF)的体外神经营养作用。结果表明,haFGF在体外能明显促进鸡胚(E-8)脊髓组织神经突起的生长,并能明显改变新生大鼠脑星形胶质细胞的形态,使扁平、多角形紧密联接的细胞转化为具有纤维样突起的胶质细胞,同时对胶质细胞DNA合成也有一定促进作用。实验还证明,haFGF可增加体外培养新生大鼠海马神经元的存活,且大大增加神经元胞体体积及突起长度。  相似文献   

10.
骨髓基质干细胞向心肌细胞诱导分化的实验研究   总被引:1,自引:0,他引:1  
目的探讨大鼠骨髓基质干细胞在体外和体内向心肌细胞诱导分化的能力,为下一步的细胞移植治疗心肌梗死提供实验基础.方法体外诱导实验中,将不同浓度的5-氮胞苷作用于不同培养时间的骨髓基质干细胞,摸索5-氮胞苷的最佳诱导时机和浓度,观察诱导后细胞形态变化,并用免疫细胞化学染色检测心肌特异性肌钙蛋白T的表达;在体内实验中,培养扩增的骨髓基质干细胞经BrdU标记后,自体移植于正常心肌内,分别通过BrdU和心肌特异性肌钙蛋白T免疫组织化学染色检测移植细胞的存活和分化情况.结果体外诱导实验中,5-氮胞苷的诱导作用以10μmol/L的浓度对传代细胞进行两次诱导,效果最好,不仅能诱导出表达心肌特异蛋白的心肌样细胞,而且这些细胞在体外能够自发搏动.体内诱导实验中,移植的细胞在正常心肌微环境中能够存活并分化为心肌细胞.结论骨髓基质干细胞在体外化学诱导和体内心肌微环境诱导时均能分化为心肌细胞,可用于细胞移植治疗心肌梗死的实验.  相似文献   

11.
Extracellular matrix (ECM) molecules have been shown to function as cues for neurite guidance in various populations of neurons. Here we show that laminin (LN) and fibronectin (FN) presented in stripe micro-patterns can provide guidance cues to neonatal (P5) inner ear spiral ganglion (SG) neurites. The response to both ECM molecules was dose-dependent. In a LN versus poly-L-lysine (PLL) assay, neurites were more often observed on PLL at low coating concentrations (5 and 10 microg/mL), while they were more often on LN at a high concentration (80 microg/mL). In a FN versus PLL assay, neurites were more often on PLL than on FN stripes at high coating concentrations (40 and 80 microg/mL). In a direct competition between LN and FN, neurites were observed on LN significantly more often than on FN at both 10 and 40 microg/mL. The data suggest a preference by SG neurites for LN at high concentrations, as well as avoidance of both LN at low and FN at high concentrations. The results also support a potential model for neurite guidance in the developing inner ear in vivo. LN, in the SG and osseus spiral lamina may promote SG dendrite growth toward the organ of Corti. Within the organ of Corti, lower concentrations of LN may slow neurite growth, with FN beneath each row of hair cells providing a stop or avoidance signal. This could allow growth cone filopodia increased time to sample their cellular targets, or direct the fibers upward toward the hair cells.  相似文献   

12.
Choroid plexus ependymal cells (CPECs) were known to promote axonal growth when choroid plexus is grafted into the adult rat spinal cord. The present study was carried out to examine whether CPECs promote axonal outgrowth from neurons derived from the CNS in vitro. Hippocampal neurons were cocultured on CPEC monolayers. After 24 h, neurite extension was evaluated using various parameters in comparison with cultures grown on poly-L-lysine (PLL)-coated plates and cocultures grown on astrocyte monolayers. The primary neurite length and total neurite length were longest in the cocultures with CPECs. The number of primary neurites and the number of branches were larger in the cultures with CPECs than in the cultures on PLL-coated plates, but almost the same as in the cocultures with astrocytes. Next, we examined whether the neurite extension-promoting effect occurring within 24 h is due primarily to contact with the CPECs or to factors secreted by CPECs into the culture medium. The CPEC monolayers were killed by ethanol fixation, and neurons cultured on them. The neurons extended long neurites with elaborate branching, as in the case of cocultures grown on living CPECs. On the other hand, CPEC-conditioned medium exhibited less promoting effect on neurite outgrowth from hippocampal neurons. These results indicate that CPECs have a capacity to promote neurite outgrowth from CNS neurons in vitro, and that surface plasma membrane-bound components of CPECs strongly contribute to the enhancement of neurite outgrowth in the present coculture system.  相似文献   

13.
《The Journal of cell biology》1986,103(6):2659-2672
We have compared neurite outgrowth on extracellular matrix (ECM) constituents to outgrowth on glial and muscle cell surfaces. Embryonic chick ciliary ganglion (CG) neurons regenerate neurites rapidly on surfaces coated with laminin (LN), fibronectin (FN), conditioned media (CM) from several non-neuronal cell types that secrete LN, and on intact extracellular matrices. Neurite outgrowth on all of these substrates is blocked by two monoclonal antibodies, CSAT and JG22, that prevent the adhesion of many cells, including neurons, to the ECM constituents LN, FN, and collagen. Neurite outgrowth is inhibited even on mixed LN/poly-D-lysine substrates where neuronal attachment is independent of LN. Therefore, neuronal process outgrowth on extracellular matrices requires the function of neuronal cell surface molecules recognized by these antibodies. The surfaces of cultured astrocytes, Schwann cells, and skeletal myotubes also promote rapid process outgrowth from CG neurons. Neurite outgrowth on these surfaces, though, is not prevented by CSAT or JG22 antibodies. In addition, antibodies to a LN/proteoglycan complex that block neurite outgrowth on several LN-containing CM factors and on an ECM extract failed to inhibit cell surface-stimulated neurite outgrowth. After extraction with a nonionic detergent, Schwann cells and myotubes continue to support rapid neurite outgrowth. However, the activity associated with the detergent insoluble residue is blocked by CSAT and JG22 antibodies. Detergent extraction of astrocytes, in contrast, removes all neurite- promoting activity. These results provide evidence for at least two types of neuronal interactions with cells that promote neurite outgrowth. One involves adhesive proteins present in the ECM and ECM receptors on neurons. The second is mediated through detergent- extractable macromolecules present on non-neuronal cell surfaces and different, uncharacterized receptor(s) on neurons. Schwann cells and skeletal myotubes appear to promote neurite outgrowth by both mechanisms.  相似文献   

14.
Chick embryo dorsal root and sympathetic ganglia cultured on untreated tissue culture plates exhibited a dependence upon both RNA and protein synthesis for the expression of nerve growth factor-mediated neurite outgrowth. Neurite outgrowth was no longer dependent upon RNA synthesis, but remained dependent upon continued protein synthesis when ganglia were cultured in plasma clots, or on either collagen or poly-l-lysine coated plates. Nerve growth factor-induced neurite outgrowth was dependent upon the presence of either microexudates, which may play an important role as functional components of the substratum across which neurites migrate, or exogenous substrata such as collagen, fibrin, or poly-l-lysine.  相似文献   

15.
Neural cortical cells, isolated from prenatal rat cerebra, were grown on surface-modified poly(lactic-co-glycolic acid, 65:35) (PLGA) films coated with poly-D-lysine (PDL) with either laminin (LN), fibronectin (FN) or collagen (CN). Immunocytochemistry showed that the isolated cells were highly immunopositive for both neurofilament and MAP-2 with well-organized neurites and somatodendritic localization. The presence of PDL with LN or FN on the PLGA films was essential for increased neural cell growth. Also, PLGA films coated with either PDL/LN or PDL/FN mixtures had higher neurite outgrowth and regular differentiation.Revisions requested 30 September 2004; Revisions received 10 November 2004  相似文献   

16.
Summary Human adult endothelial cells (ECs) were cultured on liquid-liquid interface formed when aqueous culture medium is overlaid onto a fluorocarbon solvent. When ECs were seeded on untreated interfaces, some cells seemed to attach but they did not spread or grow. In contrast, when ECs were seeded on interfaces pretreated with such proteins as collagen type IV (COL), laminin (LN), fibronectin (FN), and fibrinogen (FG) the cells spread and proliferated until they formed confluent monolayers. Proteins such as bovine serum albumin (BSA) or gelatin (GN) were not as effective in providing surfaces for vigorous growth. Cells grown on fluorocarbon interfaces expressed specialized characteristics exhibited by endothelial cells grown under the usual culture conditions; they grew in a cobblestone monolayer, stained positively for Factor VIII-related antigen, and produced angiotensin-converting enzyme. The growth rate of ECs was the same whether they were cultured on treated fluorocarbon interfaces or on the usual tissue culture plastic surfaces. Using this culture system, the interactions of ECs with various adhesive proteins used as substrata was examined. ECs were observed to attach readily to the interfaces coated with GN, COL, LN, FN, and FG, but poorly to those coated with BSA. All the substrates tested, with the exception of BSA, promoted EC growth on fluorocarbon interfaces; ECs tended to grow more rapidly on COL- or FG-coated interfaces than on LN-, FN-, or GN-coated interfaces. This work was supported in part by grants from the National Institutes of Health (R01-HL-34153 and P01-AG-04861).  相似文献   

17.
The activity of matrix metalloproteinases (MMPs) specifies the ability of the trophoblast cell to degrade extracellular matrix (ECM) substrates. Usually the process of normal human placentation involves a coordinated interaction between the fetal-derived trophoblast cells and their microenvironment in the uterus. In this study, the effects of ECM proteins on the expression of MMP-2, -9, and -14 (membrane-type MMP-1); and the production of tissue inhibitors of metalloproteinase (TIMP) types -1, -2, and -3 have been investigated. Cytotrophoblast cells at 9 or 10 wk of gestation were cultured on various ECM coated dishes under serum-free conditions. Gelatin zymography analysis showed that cells grown on fibronectin (FN), laminin (LN), and vitronectin (VN) secreted more MMP-9 (about 1.5- to 3-fold more) than cells cultured on collagen I (Col I), whereas the secretion of MMP-9 by cells cultured on collagen IV (Col IV) was only half that by the cells on Col I. Northern Blot analysis gave the same results as zymography, indicating that expression of the MMP-9 gene in cytotrophoblast cells can be affected by matrix proteins. There was no significant difference in the expression of MMP-2 either at protein or mRNA levels among the cells cultured on the different matrix substrates. The expression of MMP-14 was regulated in a manner similar to that of MMP-2. Using ELISA, we detected higher levels of TIMP-1 in the culture medium of cells grown on VN, LN, and FN compared with that grown on Col I. But the expression of TIMP-3 mRNA was remarkably inhibited by VN, and ECM proteins had no effect on TIMP-1 and TIMP-2 mRNA expression. It was also observed that cultured cytotrophoblast cells expressed the corresponding receptors for the tested matrix proteins, such as integrins alpha(1), alpha(5), alpha(6), beta(1), and beta(4). Furthermore, the adhesiveness of cytotrophoblast cells on Col I, Col IV, FN, and LN was increased by 62%, 45%, 21%, and 22%, respectively, when compared with adhesiveness on VN. Isolated cytotrophoblast cells remained stationary when cultured on dishes coated with Col I and Col IV, but they assumed a more motile morphology and aggregated into a network when cultured on LN and VN. These data indicate that human trophoblast cells interact with their microenvironment to control their behavior and function.  相似文献   

18.
The availability of culture systems for both Edinger Westphal and ciliary ganglion neurons has made it possible to examine the interactions in culture between two populations of vertebrate neurons that synapse in vivo. In the chick, Edinger Westphal neurons provide the sole presynaptic input to the ciliary ganglion and, through this projection, are responsible for the control of lens curvature (accommodation), iris constriction, and possibly smooth muscle function in the choroid layer of the eye. When embryonic chick Edinger Westphal and ciliary ganglion neurons were combined in culture and stained for enkephalin-like immunoreactivity to visualize Edinger Westphal terminals, stained calyx-like contacts were observed that resemble the calyciform terminals formed between Edinger Westphal processes and ciliary neurons in the ciliary ganglion in vivo. Although stained calyx-like contacts could also be found in Edinger Westphal-alone and ciliary ganglion-alone cultures, many more were observed when the two cell types were cultured together. The increase depended specifically on the ciliary ganglion neurons since substitution of either dorsal root ganglion or sympathetic ganglion neurons for them in the cocultures did not increase the number of calyx-like contacts staining positive for enkephalin over those present in cultures of Edinger Westphal neurons alone. When Edinger Westphal neurons were grown simultaneously with dorsal root and ciliary ganglion neurons, calyx-like contacts with enkephalin-like immunoreactivity were found to terminate preferentially on the latter. These findings suggest that vertebrate neurons can form morphologically specific contacts preferentially on appropriate target cells in culture in the absence of many of the potential cues present in the intact tissue.  相似文献   

19.
The objective of this study was to determine whether the sensitivity to varying glucose conditions differs for the peripheral and central nervous system neurons at different developmental stages. Ventral horn neurons (VHN) and dorsal root ganglion neurons (DRG) from rats of different postnatal ages were exposed to glucose-free or glucose-rich culture conditions. Following 24 h at those conditions, the number of protein gene product 9.5 positive (PGP+) DRG neurons and choline acetyltransferase positive (ChAT+) VHN were counted and their neurite lengths and soma diameters were measured. For both DRG and VHN, the highest number of cells with and without neurite outgrowth was seen when cells from postnatal day 4 donors were cultured, while the lowest cell numbers were when neurons were from donors early after birth and grown under glucose-free conditions. The length of the neurites and the soma diameter for VHN were not affected by either glucose level or age. DRG neurons, however, exhibited the shortest neurites and smallest soma diameter when neurons were obtained and cultured early after birth. Our results indicate that survival of neurons in vitro is more influenced by the developmental stage than by glucose concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号