首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
昆虫病原线虫感染寄主行为研究进展   总被引:3,自引:2,他引:1  
李慧萍  韩日畴 《昆虫知识》2007,44(5):637-642
昆虫病原线虫斯氏属Steinernema和异小杆属Heterorhabditids线虫是新型的生物杀虫剂。其感染期幼虫是惟一能够侵染寄主昆虫的虫态。这类线虫感染寄主的行为分为寻找寄主、识别寄主和侵染寄主。文章综述昆虫病原线虫感染寄主昆虫的行为以及在感染寄主过程中的影响因素。  相似文献   

2.
昆虫病原线虫感染期幼虫恢复发育的研究进展   总被引:3,自引:0,他引:3  
昆虫病原线虫的感染期幼虫(infective juvenile,IJ)是其一生中唯一具有侵染能力和可自由生活于寄主体外的虫态,一般滞育不取食,体外包裹着已经蜕去的第2龄幼虫的表皮,对外界不良环境的耐受能力强,又称为耐受态幼虫(dauer juvenile,DJ),类似于秀丽隐杆线虫Caenorhabditis elegans的耐受态幼虫。在食物信息的诱导下,感染期幼虫脱鞘,释放出共生细菌,恢复取食并继续发育,这个过程称为感染期幼虫的恢复(IJ recovery)。这个过程是发生在寄生性线虫入侵寄主时的发育过程,对于成功寄生是必要的,在线虫的产业化培养中发挥着重要作用,感染期线虫的恢复率及其发育的同步性直接影响了线虫的产量。本文概述了感染期线虫的恢复发育过程,并对诱导感染期线虫恢复发育的食物信号(food signals)、恢复的影响因素及其检测手段进行了综述,同时讨论了未来的研究方向。  相似文献   

3.
综述昆虫病原线虫液体培养的研究概况。包括液体培养的研究历史,不同培养基组分对昆虫病原线虫产量的影响,营养源的选择,培养参数在昆虫病原线虫液体培养过程中的作用,感染期昆虫病原线虫脂肪酸含量,以及昆虫病原线虫应用前景等。  相似文献   

4.
昆虫病原线虫是新型的生物杀虫剂,对钻蛀及土栖性害虫防效较好,具有部分替代化学农药的潜力。昆虫病原线虫的产业化培养是昆虫病原线虫商业化应用的基础。本文介绍了目前世界上常用的昆虫病原线虫的培养方法,包括活体培养、半固体培养和液体培养的技术,这些技术的应用有助于昆虫病原线虫的种质保存及培养,为拓展昆虫病原线虫的产业化生产和应用奠定了基础。  相似文献   

5.
唐崇惕  顾嘉寿 《四川动物》1999,18(4):152-156
内蒙科尔沁草原是牛羊胰脏阔盘吸虫病及肝脏双腔吸虫病严重的流行区。作者从双腔吸虫的昆虫宿主(第二中间宿主) 黑玉蚂蚁(Formica gagates) 腹中查获索线虫幼虫, 检到从黑玉蚂蚁腹部自动弹出的后感染期的索幼虫。与此后感染期索幼虫同形态的索幼虫在黑玉蚂蚁巢窝土壤中也找到。黑玉蚂蚁巢窝土壤中有数种索科线虫, 仅中华二索线虫( Amphimermischinensis) 的雌雄成虫在长细大小以及形态结构上与黑玉蚂蚁索幼虫相像, 它们是否同一种类尚待实验证实。  相似文献   

6.
游娟  黄建林  曹莉  韩日畴 《微生物学通报》2012,39(10):1407-1417
【目的】初生型Photorhabdus luminescens细菌产生两种胞内晶体蛋白CipA和CipB,为其共生的昆虫病原异小杆线虫提供营养。探索非共生的斯氏线虫对Cip蛋白的营养利用情况。【方法】在已构建重组Cip蛋白大肠杆菌表达体系的基础上,建立重组菌细胞与无菌斯氏SY-5线虫共培养系统,检测线虫的生长发育情况。【结果】Cip蛋白对目标线虫生长有显著支持作用:发育为成虫的比例达到65%-82%,雌虫的怀卵率为80%-95%,平均怀卵量为30-50粒,并显著降低各虫态的死亡率。【结论】Cip蛋白不仅为共生的异小杆线虫提供营养,亦能为斯氏线虫所利用。  相似文献   

7.
【目的】探究昆虫病原线虫嗜菌异小杆线虫沧州品系 Heterorhabditis bacteriophora strain Cangzhou侵染对蛴螬脂肪体和中肠的影响,进一步明确其对蛴螬的致病机理。【方法】采用透射电镜技术,观察暗黑鳃金龟 Hololtrichia oblita (Faldermann)和大黑鳃金龟 H. parallela Motschulsky 2龄幼虫被嗜菌异小杆线虫沧州品系侵染后其脂肪体和中肠组织的病理变化。【结果】血腔注射感染期病原线虫嗜菌异小杆线虫沧州品系悬浮液24和48 h后,观察发现暗黑鳃金龟和大黑鳃金龟2龄幼虫脂肪体和中肠的组织结构均按时序逐渐发生变化,起初表现为脂肪球变形或变小,颜色变浅,脂肪体细胞和中肠细胞内质网、线粒体肿胀,中肠微绒毛变形脱落等现象,48 h后包裹脂肪球的膜结构破裂,脂肪体细胞和中肠细胞线粒体破裂,内质网数量减少,中肠微绒毛大量脱落,同时核内染色质大量解离,核膜破裂。【结论】经昆虫病原线虫嗜菌异小杆线虫沧州品系处理后,暗黑鳃金龟和大黑鳃金龟两种金龟甲2龄幼虫脂肪体和中肠细胞均出现明显的病理变化过程,这是嗜菌异小杆线虫高效致死蛴螬的原因之一。本研究可为昆虫病原线虫作为一种生物防治手段在蛴螬的综合防治中更好地发挥作用提供理论依据。  相似文献   

8.
昆虫病原线虫对黄地老虎致病力的研究   总被引:1,自引:0,他引:1  
为了探索应用昆虫病原线虫防治黄地老虎Agrotis segetum的可行性,室内生测比较了9个昆虫病原线虫品系对黄地老虎4龄幼虫的致病力。生测结果表明,9个不同昆虫病原线虫品系对黄地老虎4龄幼虫的致病力差别很大,其中格氏线虫Steinernema glaseri ib(Sgib)是对黄地老虎幼虫致病力最强的昆虫病原线虫品系,侵染24、36和72 h黄地老虎幼虫的校正死亡率均高于其他线虫品系。此外,还测定了不同温度、土壤湿度以及线虫剂量对格氏线虫Sgib致病力的影响,结果表明,在21℃-27℃、20%土壤湿度以及侵染期线虫与黄地老虎幼虫数量比不少于10∶1的条件下,格氏线虫Sgib对黄地老虎幼虫的致病效果最好。田间小区实验表明,格氏线虫Sgib对黄地老虎幼虫的防效达到96.67%。  相似文献   

9.
丘雪红  曹莉  韩日畴 《昆虫知识》2010,47(5):824-833
嗜线虫致病杆菌属Xenorhabdus和发光杆菌属Photorhabdus细菌隶属肠杆菌科Enterobacteriaceae,对多种害虫致病能力强,分别与斯氏属Steinernema和异小杆属Heterorhabditis昆虫病原线虫互惠共生。该两属共生细菌既存在对昆虫寄主的病原性,又存在与线虫寄主的共生性。共生细菌与其线虫寄主的共生性主要表现以下4方面:(1)细菌产生食物信号诱导滞育不取食的感染期线虫恢复;(2)细菌为线虫生长与繁殖提供营养;(3)细菌能于感染期线虫的肠道定殖与生长;(4)细菌产生杀线虫毒素杀死非共生线虫。本文综述了共生菌以上4方面的共生性及其相关的分子机制。  相似文献   

10.
昆虫病原线虫防治地下害虫的研究进展   总被引:1,自引:0,他引:1  
《环境昆虫学报》2014,(6):1018-1024
地下害虫给农业生产造成重大损失。新型生物杀虫剂昆虫病原线虫防治地下害虫效果明显。本文综述了应用昆虫病原线虫防治金龟子、小地老虎、迟眼蕈蚊和黄曲条跳甲的幼虫等地下害虫的研究进展,为地下害虫的有效防治提供思路。  相似文献   

11.
The impact of entomopathogenic nematodes (EPN) on mortality of soil-dwelling stages of western flower thrips (WFT), Frankliniella occidentalis (Thysanoptera: Thripidae) with different insect stage combinations was studied in the laboratory and under semi-field conditions. In laboratory experiments, the efficacy of Steinernema feltiae strain Sylt (Rhabditida: Steinernematidae) at a concentration of 400 infective juveniles (IJs) cm -2 was tested against different proportions of soil-dwelling stages of WFT, i.e. late second instar larvae (L2), prepupae and pupae. Soil was used as the testing medium. S. feltiae significantly affected the mortality of all soil-dwelling life stages of WFT at all tested insect stage combinations. The proportion of late L2 in the population negatively correlated to EPN-induced mortality. WFT prepupa and pupa were similarly susceptible to S. feltiae and their proportion in the population did not affect the EPN-induced mortality under laboratory conditions. The highest mortality (80%) was recorded when the population consisted only of prepupae and/or pupae. In the semi-field study, the impact of S. feltiae , S. carpocapsae strain DD136 and Heterorhabditis bacteriophora strain HK3 (Rhabditida: Heterorhabditidae) ( H. bacteriophora ) at concentrations of 400 and 1000 IJs cm -2 was evaluated against WFT reared on green beans, Phaseolus vulgaris L., as host plant in pot experiments in a controlled climate chamber. All tested EPN strains at both dose rates significantly reduced the WFT populations. Up to 70% reduction of the WFT population was obtained at the higher EPN concentration.  相似文献   

12.
The efficacy of three entomopathogenic nematodes (Heterorhabditis spp.), from north western Himalaya, India was studied against the diamondback moth, Plutella xylostella (Linnaeus, 1758) (Lepidoptera: Plutellidae), under laboratory conditions. The larvae were exposed to 10, 20, 30 and 40 infective juveniles (IJs) of each nematode species for different time periods and they were found to be susceptible to all the EPNs tested. However, the susceptibility of larvae to nematode infection varied according to the dosages of IJs and their exposure periods. The efficacy of these indigenous entomopathogenic nematodes was also evaluated against the commercially available entomopathogenic nematode H. indica. An indigenous isolate, H. bacteriophora (HRJ), along with the commercial isolate H. indica recorded 100.0% mortality of insect larvae in 96 h exposure time against third instar larvae of P. xylostella. However, it was noticed that with the advancement of larval stage its mortality rate reduces and vice versa with the exposure period. All the tested nematode species were also found to reproduce within the host and produced infective juveniles. In conclusion, the evidence obtained in this study suggests that all the three indigenous EPN species are virulent enough to produce 100% mortality of larvae of P. xylostella. These EPN species thus have potential for the management of P. xylostella under integrated management practices.  相似文献   

13.
This study investigates the effect of host desiccation on entomopathogenic nematode (EPN) development, emergence, infectivity, and cross-protection against secondary environmental stress. Galleria mellonella hosts infected with the EPN Steinernema carpocapsae A10 were allowed to dehydrate in an environmental chamber for up to 56 days at 23 degrees C achieving a weight loss of approximately 86% by day 44 post-infection. Host carcasses were rehydrated on water-saturated filter paper in White traps to collect emergent infective juveniles (IJ) at specific time intervals. Populations were counted with an apparent peak coinciding with desiccated hosts rehydrated at 24-day post-infection. Desiccation-stressed IJ populations from each time interval were tested for infectivity, and cross-resistance to secondary temperature and pH stresses and were found to have significant increases in both infectivity and protection from extremes of temperature and pH compared with controls. Total aqueous soluble protein profiles from control and desiccation-stressed IJs were analyzed using 10% SDS Laemmli gels. Several novel proteins were over-expressed in EPN from hosts subjected to desiccation suggesting the induction and expression of stress response genes.  相似文献   

14.
Understanding the desiccation survival attributes of infective juveniles of entomopathogenic nematodes (EPN) of the genera Steinernema and Heterorhabditis, is central to evaluating the reality of enhancing the shelf-life and field persistence of commercial formulations. Early work on the structural and physiological aspects of desiccation survival focused on the role of the molted cuticle in controlling the rate of water loss and the importance of energy reserves, particularly neutral lipids. The accumulation of trehalose was also found to enhance desiccation survival. Isolation of natural populations that can survive harsh environments, such as deserts, indicated that some populations have enhanced abilities to survive desiccation. However, survival abilities of EPN are limited compared with those of some species of plant-parasitic nematodes inhabiting aerial parts of plants. Research on EPN stress tolerance has expanded on two main lines: i) to select strains of species, currently in use commercially, which have increased tolerance to environmental extremes; and ii) to utilize molecular information, including expressed sequence tags and genome sequence data, to determine the underlying genetic factors that control longevity and stress tolerance of EPN. However, given the inherent limitations of EPN survival ability, it is likely that improved formulation will be the major factor to enhance EPN longevity and, perhaps, increase the range of applications.  相似文献   

15.
16.
Single infective juveniles of Heterorhabditis bacteriophora, H. megidis (Nematoda: Heterorhabditidae), Steinernema arenarium, S. carpocapsae and S. feltiae (Nematoda: Steinernematidae) were used to infect single Galleria mellonella (Lepidoptera: Pyralidae) larvae. Four parameters of entomopathogenic nematodes pathogenicity were assessed: the mortality of insects, infectivity of nematodes, number of nematodes established per single G. mellonella, and degree of infective juveniles colonization (percent of infective juveniles which intestine was colonized by symbiotic bacteria). The accuracy, repeatability, and versatility for different species of EPNs in bioassay arenas were compared. Our modifications of the original methods yielded ~ 50% higher efficiency of infective juveniles in cell culture plates and > 20% higher efficiency in centrifuge test tubes. The efficiency of nematodes in cell culture plates (39–77%) was relatively low, especially in the case of Heterorhabditis spp. In the bioassay arena, infective juveniles migrated between cells. The results of our studies indicate that the pathogenicity of EPNs should be assessed in centrifuge test tubes. In these arenas, the infectivity of single IJs was ~ 90% for Heterorhabditis spp. and ~ 95% for Steinernema spp. The degree of colonization of the EPN isolates by symbiotic bacteria was in the range of 96–98%.  相似文献   

17.
Applications of infective juveniles (IJ) of entomopathogenic nematodes (EPN) formulated in pellets are still limited. This is principally due to limited advances in the technology of formulation. We aimed to develop a new method of mechanical formulation through material flow and to analyse its effect on the survival time of encapsulated EPN by varying the granular materials, the components of the aqueous suspension, the age of the nematodes and by applying a surface coating (C) to the pellet. Three-day-old and two-month-old Steinernema glaseri IJ were encapsulated with different proportions of diatomaceous earth (DE) and attapulgite clay (AC). The aqueous suspension containing the nematodes was prepared with double distilled water (DDW), varying proportions of Opuntia ficus-indica mucilage (OM) or gelatin (GL), and a sunflower oil surface treatment. The pellets were stored at an average room temperature of 23 ± 6°C. The best results were obtained with the following proportions: 100DE:0AC and 50DE:50AC, using the OM suspension, three-day-old nematodes and a surface C, which resulted in an average of 14 days survival time. These results confirmed that the nematodes do not die during mechanical encapsulation and that the age of the IJ as well as the loss of moisture during storage at room temperature were the factors that decreased the survival of encapsulated EPN. It was concluded that it is necessary to use neonate IJ and to reduce the moisture transfer rate in the granular structure in order to delay the desiccation of the encapsulated nematodes.  相似文献   

18.
Entomopathogenic nematodes are used for biological control of insect pests. A method for improved cryopreservation of infective juvenile stage nematodes has been developed using Steinernema carpocapsae and Heterorhabditis bacteriophora. Optimum survival for both species was achieved with 12,000 infective juveniles/ml in glycerol and 7,500/ml in Ringer''s solution. For S. carpocapsae, maximum survival also was observed with 60,000 infective juveniles/ml in glycerol and 25,000/ml in Ringer''s solution. These concentrations resulted in 100% post-cryopreservation survival of S. carpocapsae and 100% retention of original virulence to Galleria mellonella larvae. This is the first report of achieving 100% survival of an entomopathogenic nematode after preservation in liquid nitrogen. Maximum survival of H. bacteriophora following cryopreservation was 87%.  相似文献   

19.
The effects of different application technologies were evaluated on the concentration, viability, and efficiency of infective juveniles of the nematodes Heterorhabditis indica Poinar, Karunakar & David and Steinernema sp. (IBCB-n6) to control Spodoptera frugiperda Smith on corn plants. Two hundred and eighty infective juveniles of Steinernema sp. were required to kill 100% third-instar fall armyworms in petri dishes, as compared to 400 infective juveniles of the H. indica nematode to obtain 75% fall armyworm control. It is possible to spray entomopathogenic nematodes without significant loss in their concentration and viability, with equipment that produces electrical charges to the spraying mix, and with those using hydraulic and rotary nozzle tips. The concentrations of infective juveniles of H. indica and Steinernema sp. nematodes were reduced by 28% and 53%, respectively, when hydraulic spraying nozzles that require 100-mesh filtrating elements were used. Tensoactive agents of the organosilicone and ethoxylate groups did not affect the viability of infective juveniles of Steinernema sp. juveniles. Spraying corn plants (V6 growth stage) with up to 288 million infective juveniles of Steinernema sp. per hectare, diluted in the spraying mix up to 800 L ha-1, with 0.01% ethoxylate tensoactive agent, or at the same volume followed by artificial rain (6 mm water depth) was not sufficient to control S. frugiperda in a controlled environment.  相似文献   

20.
Queensland fruit fly, Bactrocera tryoni (Froggatt), is the economically most significant Australian tephritid pest species with a large invasion potential, yet relatively little work on its biological control has been undertaken. Entomopathogenic nematodes (EPNs) are of potential interest for control of this fruit fly species as it pupates in the soil. Specifically, the pre-pupal stage of B. tryoni may present a unique window for EPN application, as fully developed larvae drop from infested fruit to the soil for pupation. For the first time, we tested the capacity of three EPN species with different foraging strategies, Steinernema feltiae, Steinernema carpocapsae and Heterorhabditis bacteriophora, to cause larval and pupal mortality in B. tryoni across a range of EPN concentrations (50, 100, 200, 500 and 1000 infective juveniles IJs cm-2), substrate moisture (10, 15, 20 and 25% w/v) and temperatures (15, 20, 25 and 30 °C). We found that all EPN species tested caused environment and density dependent mortality in the third larval instar while pupae were not affected. Steinernema feltiae caused high mortality across different IJ concentrations and over a wider moisture and temperature range than the other two EPN species. High mortality caused by S. carpocapsae and H. bacteriophora was more limited to high IJ concentrations and a narrower moisture and temperature range. Our findings highlight the potential of EPNs for the control of B. tryoni and warrant further laboratory and field experiments to evaluate their efficacy under the wide environmental conditions that B. tryoni can occur in.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号