首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
昆虫病原线虫共生细菌致病机理的研究进展   总被引:7,自引:0,他引:7  
昆虫病原线虫共生细菌是寄生于昆虫病原线虫肠道内的一种细菌,革兰氏染色呈阴性,属肠杆菌科(Enterobacteriaceae)细菌[1]。它包含两个属———嗜线虫致病杆菌属(Xenorhabdus)和发光杆菌属(Photorhabdus),它们分别与斯氏线虫(Steinernema)和异小杆线虫(Heterorhabditis)共生。这两种线虫由于杀虫能力强,是最有应用潜力的昆虫病原线虫。它们之间的共生关系可以概括为:共生菌存在于线虫的肠道内,线虫携带共生菌进入寄主昆虫体内,并将共生菌释放到昆虫的血腔中;共生菌在昆…  相似文献   

2.
昆虫病原线虫共生细菌的代谢产物   总被引:16,自引:0,他引:16  
昆虫病原线虫共生细菌寄生于昆虫病原线虫肠道内 ,二者互惠共生。该菌革兰氏染色阴性 ,属肠杆菌科 (Enterobacteriaceae) ,包含两个属———嗜线虫致病杆菌属 (Xenorhabdus)和发光杆菌属 (Photorhabdus)。其中嗜线虫致病杆菌与斯氏线虫 (Steinernema)共生 ,发光杆菌与异小杆线虫 (Heterorhaditis)共生。近几年 ,随着对共生菌研究的逐渐深入 ,发现共生菌能产生许多有应用潜力的代谢产物 ,如杀虫蛋白、抑菌物质、抗癌物质、胞外酶、胞内晶体蛋白、色素及荧光素等。特别是…  相似文献   

3.
昆虫病原线虫共生菌的分类   总被引:3,自引:1,他引:2  
昆虫病原线虫共生菌是存在于昆虫病原线虫肠道内的一类细菌 ,属肠杆菌科 (Enterobacteriaceae) ,兼性厌氧 ,包括致病杆菌属 (Xenorhabdus) [1] 和光杆状菌属 (Photorhabdus) [2 ] ,它们分别与斯氏线虫属 (Stein ernema)和异小杆线虫属 (Heterorhabditis)的线虫共生[3] 。在自然界 ,共生菌存在于 3龄侵染期线虫的肠道中[4 ] ,不能从土壤中分离获得 ,是昆虫病原线虫的主要致病因子。昆虫病原线虫共生菌直到 2 0世纪 5 0年代末期才被发现 ,其分类地位也经常发生变动 ,鉴定工作尽管几十年来陆陆续续时有报道 ,但并不十分深入和系统。近年来 ,…  相似文献   

4.
昆虫病原斯氏和异小杆线虫与共生细菌的共生关系是这类线虫作为害虫生物防治因子的基础。从线虫共生细菌的信息、营养、抗菌和病原作用,以及线虫对共生细菌的保护和媒介作用综述昆虫病原线虫与其共生细菌的共生关系;描述这一共生关系的影响因子;同时,讨论了未来的研究方向和应用前景。  相似文献   

5.
初生型发光杆菌属(Photorhabdus)及嗜线虫致病杆菌属(Xenorhabdus)细菌分别与异小杆线虫属(Heterorhabditis)和斯氏线虫属(Steinernema)昆虫病原线虫互惠共生.这类昆虫病原细菌在稳定生长期分别产生两种形态各异的胞内晶体蛋白.本文回顾了这类蛋白的研究历史和最新的研究进展,特别是胞内晶体蛋白的理化性质和生物学功能,同时讨论这种晶体蛋白的研究方法与技术.  相似文献   

6.
昆虫病原线虫的共生细菌   总被引:1,自引:0,他引:1  
昆虫病原线虫与其共生细菌二者互惠共生 :共生细菌需要昆虫病原线虫作为载体以寄生寄主昆虫并做为自己的营养来源 ,而昆虫病原线则需要依靠共生细菌来杀死昆虫。综述了共生细菌的病原作用、抗菌作用与杀虫作用 ,评述了共生细菌的基因工程进展 ,讨论了昆虫共生细菌在昆虫病原线虫致病性的作用。  相似文献   

7.
昆虫病原线虫感染寄主行为研究进展   总被引:3,自引:2,他引:1  
李慧萍  韩日畴 《昆虫知识》2007,44(5):637-642
昆虫病原线虫斯氏属Steinernema和异小杆属Heterorhabditids线虫是新型的生物杀虫剂。其感染期幼虫是惟一能够侵染寄主昆虫的虫态。这类线虫感染寄主的行为分为寻找寄主、识别寄主和侵染寄主。文章综述昆虫病原线虫感染寄主昆虫的行为以及在感染寄主过程中的影响因素。  相似文献   

8.
《环境昆虫学报》2014,(6):905-911
发光杆菌属Photorhabdus细菌与异小杆属Heterorhabditis昆虫病原线虫的共生关系是这类生物杀虫剂产业化生产和田间应用的基础。本文采用Tn5转座方法构建了共生细菌P. luminescens LN2突变体库;从中筛选出一个对其共生线虫H. indica LN2的生长繁殖有显著促进作用的突变菌株(LN2-M2716);测定了该突变菌株的菌落特征、对大蜡螟Galleria mellonella及非特异共生线虫H. bacteriophora H06的毒性、对线虫产量的影响。结果显示,LN2-M2716菌株在菌落形态、色素分泌、过氧化氢酶反应、荧光、食物信息作用以及对大蜡螟毒力等方面与野生型菌株差异不明显;但对非特异共生线虫H. bacteriophora H06的毒性及对特异共生线虫H. indica LN2生长繁殖的促进作用方面均明显高于野生型菌株。论文结果为构建支持线虫高产的菌株提供了关键技术。  相似文献   

9.
致病杆菌属和光杆状菌属细菌杀虫毒素蛋白   总被引:2,自引:0,他引:2  
致病杆菌属和光杆状菌属细菌是一类分别与斯氏线虫属和异小杆属线虫共生的昆虫病原细菌 ,属肠杆菌科 ,此类细菌产生的杀虫毒素蛋白是近年来发现的一类高效、杀虫谱广的新型杀虫蛋白。此类毒素蛋白对多种昆虫具有注射和口服毒性 ,在同一菌株中有多个杀虫基因 ,各杀虫蛋白基因之间具有协同毒力效应 ,杀虫蛋白基因在大肠杆菌和植物中表达的毒素蛋白对多种害虫具有口服毒性。  相似文献   

10.
本文分别以无菌的小卷蛾斯氏线虫的A24品系线虫与其自身携带的共生细菌菌株和与格氏线虫RS92品系的共生细菌菌株,以及以无菌的嗜菌异小杆线虫的H06品系线虫与其自身携带的共生细菌菌株和与大异小杆线虫HNA品系的共生细菌菌株建立单菌组合;测定了各组合感染期线虫的致病力、干重和体内主要生化物质的含量.结果发现,共生细菌除了对感染期线虫的致病力产生显著影响外,对线虫干重、蛋白质、氨基酸、糖原和脂肪酸等生化物质的含量也有很大的影响.  相似文献   

11.
Photorhabdus and Xenorhabdus bacteria colonize the intestines of the infective soil-dwelling stage of entomophagous nematodes, Heterorhabditis and Steinernema, respectively. These nematodes infect susceptible insect larvae and release the bacteria into the insect blood. The bacteria kill the insect larvae and convert the cadaver into a food source suitable for nematode growth and development. After several rounds of reproduction the nematodes are recolonized by the bacteria before emerging from the insect cadaver into the soil to search for a new host. Photorhabdus and Xenorhabdus bacteria therefore engage in both pathogenic and mutualistic interactions with different invertebrate hosts as obligate components of their life cycle. In this review we aim to describe current knowledge of the molecular mechanisms utilized by Photorhabdus and Xenorhabdus to control their host-dependent interactions. Recent work has established that there is a trade-off between pathogenicity and mutualism in both these species of bacteria suggesting that the transition between these interactions must be under regulatory control. Despite the superficial similarity between the life cycles of these bacteria, it is now apparent that the molecular components of the regulatory networks controlling pathogenicity and mutualism in Photorhabdus and Xenorhabdus are very different.  相似文献   

12.
Members of the genus Xenorhabdus are entomopathogenic bacteria that associate with nematodes. The nematode-bacteria pair infects and kills insects, with both partners contributing to insect pathogenesis and the bacteria providing nutrition to the nematode from available insect-derived nutrients. The nematode provides the bacteria with protection from predators, access to nutrients, and a mechanism of dispersal. Members of the bacterial genus Photorhabdus also associate with nematodes to kill insects, and both genera of bacteria provide similar services to their different nematode hosts through unique physiological and metabolic mechanisms. We posited that these differences would be reflected in their respective genomes. To test this, we sequenced to completion the genomes of Xenorhabdus nematophila ATCC 19061 and Xenorhabdus bovienii SS-2004. As expected, both Xenorhabdus genomes encode many anti-insecticidal compounds, commensurate with their entomopathogenic lifestyle. Despite the similarities in lifestyle between Xenorhabdus and Photorhabdus bacteria, a comparative analysis of the Xenorhabdus, Photorhabdus luminescens, and P. asymbiotica genomes suggests genomic divergence. These findings indicate that evolutionary changes shaped by symbiotic interactions can follow different routes to achieve similar end points.  相似文献   

13.
不同昆虫寄主对昆虫病原线虫共生菌的敏感性比较   总被引:9,自引:0,他引:9  
用菜青虫、棉铃虫、甜菜夜蛾、玉米螟、粘虫、黄粉虫等 6种昆虫对 1 0株昆虫病原线虫共生菌进行了敏感性测定。结果表明 :供试菌株对 6种昆虫都有胃毒活性 ,不同菌株对同一种昆虫的毒力差别较大 ,同一菌株对不同昆虫差别也很大。 1 0株菌在 1 2 0h对菜青虫的校正死亡率和体重抑制率均最高 ,显然是最敏感的寄主。在 1 0株共生菌中 ,XenorhabdusnematophilaHB3 1 0 5 9菌株的胃毒活性最高。  相似文献   

14.
Two species of entomopathogenic nematodes, Heterorhabditis marelatus and Steinernema oregonense, were described recently from the west coast of North America. It is not known whether the bacterial symbionts of these nematodes are also unique. Here we compared partial 16S rRNA sequences from the symbiotic bacteria of these two nematodes with sequence from previously described Photorhabdus and Xenorhabdus species. The 16S sequence from the new Xenorhabdus isolate appears very similar to, although not identical to, that of X. bovienii, the common symbiont of S. feltiae. The new Photorhabdus isolate appears to be very distinct from other known Photorhabdus species, although its closest affinities are with the P. temperata group. We also verified a monoxenic association between each isolate and its nematode by amplifying and sequencing bacterial 16S sequence from crushed adult and juvenile nematodes and from bacterial cultures isolated from infected hosts.  相似文献   

15.
Photorhabdus is a genus of entomopathogenic Gram-negative bacteria that belong to the family Enterobactericeae. Remarkably, at the same time as being pathogenic to insect larvae, Photorhabdus also have a mutualistic relationship with entomophagous nematodes of the family Heterorhabditiae. Photorhabdus can be isolated in two phenotypically distinct forms, termed the primary and secondary variant. Both variants grow equally well and are equally virulent when injected into insect larvae. However, only the primary variant can colonize the intestinal tract of the IJ stage of the nematode and support nematode growth and development. The primary variant expresses several phenotypes that are absent from the secondary variant, including the production of extracellular enzymes, pigments, antibiotics and light. In this study, we use Photorhabdus temperata strain K122 to show that these primary-specific products are symbiosis factors, i.e. factors that are required for nematode growth and development. We also show that, in P. temperata K122, the production of these symbiosis factors is repressed in the secondary variant by the protein encoded by a gene with homology to hexA from Erwinia. Moreover, the derepression of the symbiosis factors in the secondary variant results in a significant attenuation of virulence to larvae of the greater wax moth, Galleria mellonella. This suggests that, during a normal infection, pathogenicity and symbiosis must be temporally separated and that HexA is involved in the regulation of this pathogen-symbiont transition.  相似文献   

16.
17.
Photorhabdus and Xenorhabdus are two genera of entomopathogenic bacteria having a mutualistic relationship with their respective nematode hosts, Heterorhabditis and Steinernema. One of the pathogenic mechanisms of these bacteria includes host immunodepression, which leads to lethal septicemia. It has been known that X. nematophila inhibits phospholipase A2 (PLA2) to induce host immunodepression. Here, we tested the hypothesis of PLA2 inhibition using another bacterial species involved in other genera. P. temperata subsp. temperata is the intestinal symbiont of an entomopathogenic nematode, H. megidis. The bacteria caused potent pathogenicity in a dose-dependent manner against the fifth instar larvae of a test target insect, Spodoptera exigua, as early as 24 h after the intra-hemocoelic injection. In response to the live bacterial injection, hemocyte nodulation (a cellular immune response) and prophenoloxidase (pPO) activation were inhibited, while the injection of heat-killed bacteria significantly induced both immune reactions. The immunodepression induced by the live bacteria was reversed by the addition of arachidonic acid, the catalytic product of phospholipase A2. In contrast, the addition of dexamethasone, a specific PLA2 inhibitor to the heat-killed bacterial treatment, inhibited both immune capacities. In addition to a previously known PLA2 inhibitory action of X. nematophila, the inhibition of P. temperata temperata on PLA2 suggests that bacteria symbiotic to entomopathogenic nematodes share a common pathogenic target to result in an immunodepressive state of the infected insects. To prove this generalized hypothesis, we used other bacterial species (X. bovienni, X. poinarii, and P. luminescens) involved in these two genera. All our experiments clearly showed that these other bacteria also share their inhibitory action against PLA2 to induce host immunodepression.  相似文献   

18.
The bacterium Xenorhabdus sp. is symbiotically associated with the entomopathogenic nematode Steinernema riobravis. This nematode is produced in monoxenic culture with Xenorhabdus sp. and is sold as a biological insecticide. Acceptable yields in fermentors can only be achieved in the presence of vigorous growth of the bacterium. We investigated the fatty acid composition of Xenorhabdus species when grown at 15, 20, 25 or 30 degrees C on media containing one of two primary carbon sources: glucose or lipids from the insect host, Galleria mellonella. Both temperature and primary carbon source significantly affected lipid quantity and quality in Xenorhabdus sp. Bacteria grown with insect lipids as a primary carbon source accumulated more lipids with greater proportion of longer chain fatty acids than bacteria grown with glucose as a primary carbon source. Cells grown with insect lipids at 15 degrees C had a lower lipid content than cells grown on the same media at 20, 25 or 30 degrees C. Increasing growth temperature increased saturated fatty acids and decreased unsaturated fatty acids, irrespective of carbon source. We recommend addition of complex fatty acid sources that resemble natural host lipids to growth medium for mass producing entomopathogenic nematodes. This could provide nematode quality similar to in vivo-produced nematodes.  相似文献   

19.
In this work, we investigate the investment of entomopathogenic Steinernema nematodes (Rhabditidae) in their symbiotic association with Xenorhabdus bacteria (Enterobacteriaceae). Their life cycle comprises two phases: (1) a free stage in the soil, where infective juveniles (IJs) of the nematode carry bacteria in a digestive vesicle and search for insect hosts, and (2) a parasitic stage into the insect where bacterial multiplication, nematode reproduction, and production of new IJs occur. Previous studies clearly showed benefits to the association for the nematode during the parasitic stage, but preliminary data suggest the existence of costs to the association for the nematode in free stage. IJs deprived from their bacteria indeed survive longer than symbiotic ones. Here we show that those bacteria-linked costs and benefits lead to a trade-off between fitness traits of the symbiotic nematodes. Indeed IJs mortality positively correlates with their parasitic success in the insect host for symbiotic IJs and not for aposymbiotic ones. Moreover mortality and parasitic success both positively correlate with the number of bacteria carried per IJ, indicating that the trade-off is induced by symbiosis. Finally, the trade-off intensity depends on parental effects and, more generally, is greater under restrictive environmental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号