首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
目的:探讨A型核纤层蛋白前体( prelamin A)在细胞内堆积造成细胞早老的机理,筛选了prelamin A相互作用蛋白并研究其在早老细胞中的表达情况.方法:以prelamin A的C末端区域为诱饵蛋白,采用酵母双杂交方法从人骨骼肌cDNA文库中筛选prelamin A相互作用蛋白.构建了prelaminA识别因子(Narf)与绿色荧光蛋白融合表达载体pEGFP - Narf,与红色荧光蛋白- prelamin A融合表达质粒pDsRed - PLA共转染HEK293细胞,激光共聚焦显微观察共定位情况.Western blotting检测Narf在衰老表型HEK293PLA细胞的表达情况.结果:筛选得到包括Narf在内的7个候选相互作用蛋白.Narf与prelamin A能相互作用并共定位于核纤层,在prelamin A过表达的HEK293PLA细胞中Narf表达没有升高.结论:Narf在细胞内与prelamin A相互作用,且表达量不受后者影响.  相似文献   

2.
目的 通过筛选LMO3的相互作用蛋白,进一步了解LMO3的作用及可能机制。方法酵母双杂交方法筛选LMO3相瓦作用蛋白,并通过酵母结合试验、免疫共沉淀及荧光共定位等进行验证。结果在初步获得相互作用蛋白:钙-整合素结合蛋白(Calcium—and integrin—binding protein,CIB)的基础上,在酵母中证实了LMO3与CIB的相互作用,并通过酵母结合试验确定了CIB与LMO3的相互作用位点,发现CIB可与LMO3的第一个LIM结构域(LIMI)及全长LMO3结合,免疫共沉淀试验确证了它们可以在真核细胞内结合,荧光共定位表明与CIB的相互作用可使LMO3在C8细胞中的定位由细胞核移到细胞质。结论LMO3可以与CIB在真核细胞中发生相互作用,提示LMO3可能通过与CIB的相互作用参与细胞相关功能的调节。  相似文献   

3.
文中报导了本实验室最近发现的一种新型钙调蛋白(CaM)天然拮抗剂——酸枣仁皂甙A,它能显著地抑制CaM活化PDE的活力.为研究它与CaM间的相互作用,本实验还制备了与天然CaM具有相同激活PDE能力的丹磺酰钙调蛋白(D-CaM).D-CaM的荧光光谱研究表明,酸枣仁甙A的加入诱导CaM分子的疏水位点更加暴露,从而增强丹磺酰基团的荧光发射量子产率.桔抗剂与CaM间的结合是绝对依赖Ca~(2 )的.荧光滴定的结果证明此结合的解离常数为2.8μM.酸枣仁皂甙A能进一步加强三氟啦嗪(TFP)所诱导的D-CaM荧光增强.这结果暗示,它不与TFP竞l争CaM上相同的结合位点.  相似文献   

4.
GhZFP1蛋白是从盐胁迫棉花幼苗cDNA文库中分离的一种CCCH型锌指蛋白.初步的生物学功能研究表明,过量表达该基因的转基因烟草耐盐性和抗病性显著提高.为深入研究GhZFP1蛋白的作用机制,构建pGBKT7-m1诱饵表达载体,利用酵母双杂交系统从盐胁迫诱导棉花cDNA文库中筛选与其相互作用的蛋白.通过阳性克隆的表型确定、PCR和限制性内切酶检测以及测序和生物信息学分析,获得9个与诱饵蛋白相互作用的靶蛋白.双分子荧光互补实验证明,GhZFP1与GZIRD19A确实存在互作关系.通过分析这些靶蛋白的已知功能,为研究GhZFP1锌指蛋白的未知生物学功能提供重要信息.  相似文献   

5.
目的:鉴定端粒蛋白TRF1和肌动蛋白结合蛋白PFN2是否存在相互作用,并且两者的相互作用是否与端粒在细胞核周的锚定有关。方法:将TRF1构建到myc标签载体,PFN2构建到GST标签载体,采用GST-pull down技术,验证两者是否存在相互作用;同时将TRF1构建到EGFP标签的绿色荧光载体,PFN2构建到RED标签的红色荧光载体,两者共转入细胞,利用荧光显微镜观察两者在细胞中的共定位情况。结果:GST-pull down证明TRF1与PFN2存在直接相互作用,两者在细胞中可以共定位。结论:TRF1与PFN2存在相互作用,且这种相互作用发生在细胞核周。  相似文献   

6.
早老症(Hutchinson-Gilford progeria syndrome,HGPS)是一种极其罕见的遗传性疾病,它是由LMNA基因突变引起的,产生一个截短的lamin A 蛋白称为 progerin.核纤层蛋白异常A加工积累的 progerin 能够破坏核纤层的支架功能,替代正常蛋白质与其配体结合,导致细胞核畸形和早老表型.  相似文献   

7.
以载体pYES2为基础,构建了酵母表达载体pYES2G,该载体含有融合了过氧化物酶体定位信号1(PTS1)的绿色荧光蛋白报告分子GFP-SKL编码基因,该基因以酵母TEF1启动子启动。pYES2转化研究表明,在野生型酵母INVScl中,GFP-SKL蛋白在细胞中呈点状聚集,而在酵母PEX5p缺陷菌株ATCC4003603中,荧光为弥散状,证明报告分子GFP-SKL可通过PEX5p蛋白有效定位到过氧化物酶体。在载体pYES2G的多克隆位点分别连入酵母及产黄青霉PEX5p编码基因得到载体pYES2G/ScPEX5和pYES2G/PcPEX5,转化酵母ATCC4003603,荧光均呈聚集状,证明外源PEX5p基因的表达恢复了缺陷菌株的功能。pYES2G载体为真菌过氧化物酶体相关基因的功能研究提供了直观有效的方法。  相似文献   

8.
A型核纤层蛋白由LMNA基因编码,为核纤层的主要成分,呈动态网状结构,位于核膜下层,起重要的机械支持作用,直接或间接与染色质相互作用,在维持染色质结构、转录、DNA复制和细胞凋亡等方面发挥重要作用.LMNA基因及其编码蛋白lamin A/C异常能引起一组人类遗传病,称为核纤层蛋白病.为深入了解A型核纤层蛋白的正常生理功能及其在相关核纤层蛋白病中的作用,本文就A型核纤层蛋白的结构分类、修饰组装、动力学、相互作用蛋白及相关核纤层蛋白病等方面进行综述.  相似文献   

9.
p75NTR是低亲和力的神经生长因子受体,能与高亲和力受体TrkA协同作用促进细胞增殖,也能与细胞内配体结合介导死亡信号通路,诱导细胞凋亡.为了探讨p75NTR功能的调控机制,本文利用膜蛋白酵母双杂交技术从人胎脑cDNA文库中筛选到一个新的p75NTR相互作用蛋白--BFAR.通过对酵母的共转化、GST pull-down和免疫共沉淀实验,证实了p75NTR与BFAR蛋白在体内外相互作用的特异性.荧光共定位实验发现,两者可共定位于细胞质中.此外,荧光素酶检测实验表明,共转染p75NTR和BFAR能够抑制p75NTR介导的NFκB和JNK信号通路.细胞周期实验发现,BFAR在PC-12细胞和HEK293T细胞中的高表达使细胞周期中的G2/M期细胞数增加,S期细胞数量减少,而G0/G1期细胞数无显著差异.  相似文献   

10.
Asy (apoptosis /saibousi Yutsudo)是日本Yutsudo小组于1999年发现的一个新的人类细胞凋亡诱发基因. 2000年齐兵等人通过酵母双杂交系统从人肺细胞系(W1-38) cDNA 文库中克隆出一个能与ASY蛋白相互作用的蛋白的新基因hap (homologue of asy protein). 已经证明ASY能在酵母细胞和哺乳动物细胞中形成同源二聚体, ASY与HAP能在酵母细胞中形成异源二聚体, ASY和HAP均能诱发肿瘤细胞Saos2和CGL4凋亡. 通过酵母双杂交系统证明HAP能在酵母细胞中形成同源二聚体; 通过交叉免疫沉淀证明HAP与ASY能在人类细胞中形成异源二聚体. 通过AnnexinV, TUNEL, DNA Ladder和流式细胞计数等检测凋亡的技术, 对asy, hap单独转染或共转染的人类正常细胞或肿瘤细胞的凋亡进行定性或定量检测, 证明ASY和HAP不仅诱发人类肿瘤细胞凋亡, 而且能诱发人类正常细胞凋亡, 并且证明由ASY与HAP形成的异源二聚体可降低由ASY和HAP各自形成的同源二聚体诱发细胞凋亡的活性, 揭示ASY与HAP形成同源或异源二聚体是调控人类细胞凋亡的重要机制.  相似文献   

11.
Patients with the autosomal dominant form of Emery-Dreifuss muscular dystrophy (EDMD) or familial partial lipodystrophy (FPLD) have specific mutations in the lamin A gene. Three such point mutations, G465D (FPLD), R482L, (FPLD), or R527P (EDMD), were introduced by site-specific mutagenesis in the C-terminal tail domain of a FLAG-tagged full-length lamin A construct. HeLa cells were transfected with mutant and wild-type constructs. Lamin A accumulated in nuclear aggregates and the number of cells with aggregates increased with time after transfection. At 72 h post transfection 60-80% of cells transfected with the mutant lamin A constructs had aggregates, while only 35% of the cells transfected with wild-type lamin A revealed aggregates. Mutant transfected cells expressed 10-24x, and wild-type transfected cells 20x, the normal levels of lamin A. Lamins C, B1 and B2, Nup153, LAP2, and emerin were recruited into aggregates, resulting in a decrease of these proteins at the nuclear rim. Aggregates were also characterized by electron microscopy and found to be preferentially associated with the inner nuclear membrane. Aggregates from mutant constructs were larger than those formed by the wild-type constructs, both in immunofluorescence and electron microscopy. The combined results suggest that aggregate formation is in part due to overexpression, but that there are also mutant-specific effects.  相似文献   

12.
Mutations in the LMNA gene, which encodes nuclear lamins A and C by alternative splicing, can give rise to Emery-Dreifuss muscular dystrophy. The mechanism by which lamins A and C separately contribute to this molecular phenotype is unknown. To address this question we examined ten LMNA mutations exogenously expressed as lamins A and C in COS-7 cells. Eight of the mutations when expressed in lamin A, exhibited a range of nuclear mislocalisation patterns. However, two mutations (T150P and delQ355) almost completely relocated exogenous lamin A from the nuclear envelope to the cytoplasm, disrupted nuclear envelope reassembly following cell division and altered the protein composition of the mid-body. In contrast, exogenously expressed DsRed2-tagged mutant lamin C constructs were only inserted into the nuclear lamina if co-expressed with any EGFP-tagged lamin A construct, except with one carrying the T150P mutation. The T150P, R527P and L530P mutations reduced the ability of lamin A, but not lamin C from binding to emerin. These data identify specific functional roles for the emerin-lamin C- and emerin-lamin A- containing protein complexes and is the first report to suggest that the A-type lamin mutations may be differentially dysfunctional for the same LMNA mutation.  相似文献   

13.
Lamin A/C gene encodes a nuclear membrane protein, and mutations in this gene are associated with diverse degenerative diseases that are linked to premature aging. While lamin A/C is involved in the regulation of tissue homeostasis, the distinct expression patterns are poorly understood in the mesenchymal cells differentiating into adipocytes. Here, we examined the expression of lamin A/C in a rat mesenchymal progenitor cell-line, ROB-C26 (C26). Immunocytochemical analysis showed that lamin A/C was transiently down-regulated in immature adipocytes, but its expression increased with terminal differentiation. To elucidate the role of lamin A/C expression on mesenchymal cell differentiation, lamin A/C expression was suppressed using short hairpin RNA (shRNA) molecules in C26 cells. In the absence of adipogenic stimuli, lamin A/C shRNA decreased alkaline phosphatase (ALP) activity, but induced preadipocyte factor -1 (Pref-1) mRNA expression. In the presence of adipogenic stimuli, lamin A/C knockdown promotes adipocytes differentiation, as assessed by the detection of an increase in Oil Red O staining. RT-PCR analysis showed that lamin A/C shRNA resulted in increased mRNA expression of PPARγ2 and aP2 during adipocyte differentiation. These results suggest that decreased lamin A/C expression levels not only suppress osteoblast phenotypes but also promote adipocyte differentiation in C26 cells.  相似文献   

14.
Mou F  Forest T  Baines JD 《Journal of virology》2007,81(12):6459-6470
The herpes simplex virus type 1 (HSV-1) US3 gene encodes a serine/threonine kinase that, when inactivated, causes capsids to aggregate aberrantly between the inner and outer nuclear membranes (INM and ONM, respectively) within evaginations/extensions of the perinuclear space. In both Hep2 cells and an engineered cell line derived from Hep2 cells expressing lamin A/C fused to enhanced green fluorescent protein (eGFP-lamin A/C), lamin A/C localized mostly in a reticular pattern with small regions of the INM devoid of eGFP-lamin A/C when they were either mock infected or infected with wild-type HSV-1(F). Cells infected with HSV-1(F) also contained some larger diffuse regions lacking lamin A/C. Proteins UL31 and UL34, markers of potential envelopment sites at the INM and perinuclear virions, localized within the regions devoid of lamin A/C and also in regions containing lamin A/C. Similar to previous observations with Vero cells (S. L. Bjerke and R. J. Roller, Virology 347:261-276, 2006), the proteins UL34 and UL31 localized exclusively in very discrete regions of the nuclear lamina lacking lamin A/C in the absence of US3 kinase activity. To determine how US3 alters lamin A/C distribution, US3 was purified and shown to phosphorylate lamin A/C at multiple sites in vitro, despite the presence of only one putative US3 kinase consensus site in the lamin A/C sequence. US3 kinase activity was also sufficient to invoke partial solubilization of lamin A/C from permeabilized Hep2 cell nuclei in an ATP-dependent manner. Two-dimensional electrophoretic analyses of lamin A/C revealed that lamin A/C is phosphorylated in HSV-infected cells, and the full spectrum of phosphorylation requires US3 kinase activity. These data suggest that US3 kinase activity regulates HSV-1 capsid nuclear egress at least in part by phosphorylation of lamin A/C.  相似文献   

15.
16.
Familial partial lipodystrophy (FPLD), Dunnigan variety, is an autosomal dominant disorder characterized by marked loss of subcutaneous adipose tissue from the extremities and trunk but by excess fat deposition in the head and neck. The disease is frequently associated with profound insulin resistance, dyslipidemia, and diabetes. We have localized a gene for FPLD to chromosome 1q21-q23, and it has recently been proposed that nuclear lamin A/C is altered in FPLD, on the basis of a novel missense mutation (R482Q) in five Canadian probands. This gene had previously been shown to be altered in autosomal dominant Emery-Dreifuss muscular dystrophy (EDMD-AD) and in dilated cardiomyopathy and conduction-system disease. We examined 15 families with FPLD for mutations in lamin A/C. Five families harbored the R482Q alteration that segregated with the disease phenotype. Seven families harbored an R482W alteration, and one family harbored a G465D alteration. All these mutations lie within exon 8 of the lamin A/C gene-an exon that has also been shown to harbor different missense mutations that are responsible for EDMD-AD. Mutations could not be detected in lamin A/C in one FPLD family in which there was linkage to chromosome 1q21-q23. One family with atypical FPLD harbored an R582H alteration in exon 11 of lamin A. This exon does not comprise part of the lamin C coding region. All mutations in FPLD affect the globular C-terminal domain of the lamin A/C protein. In contrast, mutations responsible for dilated cardiomyopathy and conduction-system disease are observed in the rod domain of the protein. The FPLD mutations R482Q and R482W occurred on different haplotypes, indicating that they are likely to have arisen more than once.  相似文献   

17.
We identified the single gene for nuclear lamin in the genome draft of the sea anemone Nematostella vectensis, a member of the cnidaria, a very old metazoan phylum. The gene consists of 10 exons and 9 introns. Strikingly all 9 intron positions are conserved in the human lamin B genes, which have only 1 (lamin B1) or 2 (lamin B2) additional introns. Using the information on neighboring genes we propose that the human lamin B1 gene on chromosome 5 is the true homolog of the Nematostella lamin gene, while the lamin B2 gene on chromosome 19 arose during vertebrate evolution. In marked contrast to this conservation of gene structure are the results in the rapidly evolving genomes of Drosophila and Caenorhabditis elegans. Here the lamin genes have much fewer introns and these occur often at novel positions. In the single nematode lamin gene and the Drosophila lamin Dmo gene no intron position coincides with an intron in the sea anemone lamin gene.  相似文献   

18.
19.
Emerin is an inner nuclear membrane protein that is involved in X-linked recessive Emery-Dreifuss muscular dystrophy (X-EDMD). Although the function of this protein is still unknown, we revealed that C-terminus transmembrane domain-truncated emerin (amino acid 1-225) binds to lamin A with higher affinity than lamin C. Screening for the emerin binding protein and immunoprecipitation analysis showed that lamin A binds to emerin specifically. We also used the yeast two-hybrid system to clarify that this interaction requires the top half of the tail domain (amino acid 384-566) of lamin A. Lamin A and lamin C are alternative splicing products of the lamin A/C gene that is responsible for autosomal dominant Emery-Dreifuss muscular dystrophy (AD-EDMD). These results indicate that the emerin-lamin interaction requires the tail domains of lamin A and lamin C. The data also suggest that the lamin A-specific region (amino acids 567-664) plays some indirect role in the difference in emerin-binding capacity between lamin A and lamin C. This is the first report that refers the difference between lamin A and lamin C in the interaction with emerin. These data also suggest that lamin A is important for nuclear membrane integrity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号