首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
2.
Lamin A/C proteins are the major components of a thin proteinaceous filamentous meshwork, the lamina, that underlies the inner nuclear membrane. A few specific mutations in the lamin A/C gene cause a disease with remarkably different clinical features: FPLD, or familial partial lipodystrophy (Dunnigan-type), which mainly affects adipose tissue. Lamin A/C mutant R482W is the key variant that causes FPLD. Biomolecular interaction and molecular dynamics (MD) simulation analysis were performed to understand dynamic behavior of native and mutant structures at atomic level. Mutant lamin A/C (R482W) showed more interaction with its biological partners due to its expansion of interaction surface and flexible nature of binding residues than native lamin A/C. MD simulation clearly indicates that the flexibility of interacting residues of mutant are mainly due to less involvement in formation of inter and intramolecular hydrogen bonds. Our analysis of native and Mutant lamin A/C clearly shows that the structural and functional consequences of the mutation R482W causes FPLD. Because of the pivotal role of lamin A/C in maintaining dynamics of nuclear function, these differences likely contribute to or represent novel mechanisms in laminopathy development.  相似文献   

3.
4.
Autosomal dominantly inherited missense mutations in lamins A and C cause familial partial lipodystrophy of the Dunnigan-type (FPLD), and myopathies including Emery-Dreifuss muscular dystrophy (EDMD). While mutations responsible for FPLD are restricted to the carboxyl-terminal tails, those responsible for EDMD are spread throughout the molecules. We observed here the same structural abnormalities in the nuclear envelope and chromatin of fibroblasts from patients with FPLD and EDMD, harboring missense mutations at codons 482 and 453, respectively. Similar nuclear alterations were generated in fibroblasts, myoblasts, and preadipocytes mouse cell lines overexpressing lamin A harboring either of these two mutations. A large variation in sensitivity to lamin A overexpression was observed among the three cell lines, which was correlated with their variable endogenous content in A-type lamins and emerin. The occurrence of nuclear abnormalities was reduced when lamin B1 was coexpressed with mutant lamin A, emphasizing the functional interaction of the two types of lamins. Transfected cells therefore develop similar phenotypes when expressing lamins mutated in the carboxyl-terminal tail at sites responsible for FPLD or EDMD.  相似文献   

5.
Dunnigan-type familial partial lipodystrophy (FPLD) is a laminopathy characterized by an aberrant fat distribution and a metabolic syndrome for which oxidative stress has recently been suggested as one of the disease-causing mechanisms. In a family affected with FPLD, we identified a heterozygous missense mutation c.1315C>T in the LMNA gene leading to the p.R439C substitution. Cultured patient fibroblasts do not show any prelamin A accumulation and reveal honeycomb-like lamin A/C formations in a significant percentage of nuclei. The mutation affects a region in the C-terminal globular domain of lamins A and C, different from the FPLD-related hot spot. Here, the introduction of an extra cysteine allows for the formation of disulphide-mediated lamin A/C oligomers. This oligomerization affects the interaction properties of the C-terminal domain with DNA as shown by gel retardation assays and causes a DNA-interaction pattern that is distinct from the classical R482W FPLD mutant. Particularly, whereas the R482W mutation decreases the binding efficiency of the C-terminal domain to DNA, the R439C mutation increases it. Electron spin resonance spectroscopy studies show significantly higher levels of reactive oxygen species (ROS) upon induction of oxidative stress in R439C patient fibroblasts compared to healthy controls. This increased sensitivity to oxidative stress seems independent of the oligomerization and enhanced DNA binding typical for R439C, as both the R439C and R482W mutants show a similar and significant increase in ROS upon induction of oxidative stress by H2O2.  相似文献   

6.
Using a phage-displayed peptide library, we have identified the epitope recognized by a new panel of five monoclonal antibodies (mAbs) raised against full-length recombinant human lamin A. The mAbs were found to recognize both lamin A and C by Western blotting and immunolocalization at the nuclear rim. A nine-amino acid consensus sequence PLLTYRFPP in the common immunoglobulin-like (Ig-like) domain of lamin A/C contains the binding site for all five mAbs. Three-dimensional structure of the Ig-like domain of lamin A/C shows this sequence is a complete beta-strand. This sequence includes arginine-482 (R482) which is mutated in most cases of Dunnigan-type familial partial lipodystrophy (FPLD). R482 may be part of an interaction site on the surface of lamin A/C for lamin-binding proteins associated with lipodystrophy.  相似文献   

7.
The X-linked form of Emery-Dreifuss muscular dystrophy (X-EDMD) is caused by absence, or greatly reduced amounts, of the inner nuclear-membrane protein, emerin. The autosomal dominant form (AD-EDMD) is caused by missense mutations in lamins A and C, two components of the nuclear lamina that interact directly with emerin. Lamin A/C mutations also cause one form of dilated cardiomyopathy (CMD1A) and one form of limb-girdle muscular dystrophy (LGMD1B), both of which have clinical features in common with EDMD, as well as a rare, unrelated form of lipodystrophy (FPLD). Evidence is now emerging that defective assembly of the nuclear lamina is a feature of all these diseases, although not necessarily the direct cause. Why only heart and skeletal muscle, and possibly connective tissue, are affected in EDMD and why expression of the disease is so extremely variable between individuals remains to be explained.  相似文献   

8.
The LMNA gene, which encodes the nuclear envelope protein lamin A/C, is considered to be the most common autosomal disease gene associated with familial dilated cardiomyopathy. To date, each mutation of the LMNA gene has been associated with a specific disease phenotype. Clinical data, family histories, and blood samples were collected from 27 biological members of a family with dilated cardiomyopathy, prominently occurring as heart failure and conduction system disease with a high incidence of sudden cardiac death in young females. Twelve exons of the LMNA gene were screened for nucleotide alterations. A novel insertion mutation (nucleotide 1526insA, amino acid T510Y) in exon nine of the LMNA gene was identified in seven subjects (7/27, 25.9 %). This reveals that the LMNA gene insertion mutation (T510Y frameshift mutation) can cause dilated cardiomyopathy, conduction system disease, and sudden cardiac death without skeletal myopathy, clinically manifested with early onset, severe symptoms, and poor prognosis.  相似文献   

9.
Patients with the autosomal dominant form of Emery-Dreifuss muscular dystrophy (EDMD) or familial partial lipodystrophy (FPLD) have specific mutations in the lamin A gene. Three such point mutations, G465D (FPLD), R482L, (FPLD), or R527P (EDMD), were introduced by site-specific mutagenesis in the C-terminal tail domain of a FLAG-tagged full-length lamin A construct. HeLa cells were transfected with mutant and wild-type constructs. Lamin A accumulated in nuclear aggregates and the number of cells with aggregates increased with time after transfection. At 72 h post transfection 60-80% of cells transfected with the mutant lamin A constructs had aggregates, while only 35% of the cells transfected with wild-type lamin A revealed aggregates. Mutant transfected cells expressed 10-24x, and wild-type transfected cells 20x, the normal levels of lamin A. Lamins C, B1 and B2, Nup153, LAP2, and emerin were recruited into aggregates, resulting in a decrease of these proteins at the nuclear rim. Aggregates were also characterized by electron microscopy and found to be preferentially associated with the inner nuclear membrane. Aggregates from mutant constructs were larger than those formed by the wild-type constructs, both in immunofluorescence and electron microscopy. The combined results suggest that aggregate formation is in part due to overexpression, but that there are also mutant-specific effects.  相似文献   

10.
The Charcot-Marie-Tooth (CMT) disorders comprise a group of clinically and genetically heterogeneous hereditary motor and sensory neuropathies, which are mainly characterized by muscle weakness and wasting, foot deformities, and electrophysiological, as well as histological, changes. A subtype, CMT2, is defined by a slight or absent reduction of nerve-conduction velocities together with the loss of large myelinated fibers and axonal degeneration. CMT2 phenotypes are also characterized by a large genetic heterogeneity, although only two genes---NF-L and KIF1Bbeta---have been identified to date. Homozygosity mapping in inbred Algerian families with autosomal recessive CMT2 (AR-CMT2) provided evidence of linkage to chromosome 1q21.2-q21.3 in two families (Zmax=4.14). All patients shared a common homozygous ancestral haplotype that was suggestive of a founder mutation as the cause of the phenotype. A unique homozygous mutation in LMNA (which encodes lamin A/C, a component of the nuclear envelope) was identified in all affected members and in additional patients with CMT2 from a third, unrelated family. Ultrastructural exploration of sciatic nerves of LMNA null (i.e., -/-) mice was performed and revealed a strong reduction of axon density, axonal enlargement, and the presence of nonmyelinated axons, all of which were highly similar to the phenotypes of human peripheral axonopathies. The finding of site-specific amino acid substitutions in limb-girdle muscular dystrophy type 1B, autosomal dominant Emery-Dreifuss muscular dystrophy, dilated cardiomyopathy type 1A, autosomal dominant partial lipodystrophy, and, now, AR-CMT2 suggests the existence of distinct functional domains in lamin A/C that are essential for the maintenance and integrity of different cell lineages. To our knowledge, this report constitutes the first evidence of the recessive inheritance of a mutation that causes CMT2; additionally, we suggest that mutations in LMNA may also be the cause of the genetically overlapping disorder CMT2B1.  相似文献   

11.
Ferenci P 《Human genetics》2006,120(2):151-159
Wilson disease is an autosomal recessive inherited disorder of copper metabolism. The Wilson disease gene codes for a copper transporting P-type ATPase (ATP7B). Molecular genetic analysis reveals at least 300 distinct mutations. While most reported mutations occur in single families, a few are more common. The most common mutation in patients from Central, Eastern, and Northern Europe is the point mutation H1069Q (exon 14). About 50–80% of Wilson disease (WD) patients from these countries carry at least one allele with this mutation with an allele frequency ranging between 30 and 70%. Other common mutations in Central and Eastern Europe are located on exon 8 (2299insC, G710S), exon 15 (3400delC) and exon 13 (R969Q). The allele frequency of these mutations is lower than 10%. In Mediterranean countries there is a wide range of mutations, the frequency of each of them varies considerably from country to country. In Sardinia, a unique deletion in the 5′ UTR (−441/−427 del) is very frequent. In mainland Spain the missense mutation M645R in exon 6 is particularly common. Data from non-European countries are scarce. Most data from Asia are from Far Eastern areas (China, South Korea and Japan) where the R778L missense mutation in exon 8 is found with an allele frequency of 14–49%. In summary, given the constant improvement of analytic tools genetic testing will become an integral part for the diagnosis of WD. Knowledge of the differences in the worldwide distribution of particular mutations will help to design shortcuts for genetic diagnosis of WD.  相似文献   

12.
13.
Mandibuloacral dysplasia (MAD) is a rare autosomal recessive disorder, characterized by postnatal growth retardation, craniofacial anomalies, skeletal malformations, and mottled cutaneous pigmentation. The LMNA gene encoding two nuclear envelope proteins (lamins A and C [lamin A/C]) maps to chromosome 1q21 and has been associated with five distinct pathologies, including Dunnigan-type familial partial lipodystrophy, a condition that is characterized by subcutaneous fat loss and is invariably associated with insulin resistance and diabetes. Since patients with MAD frequently have partial lipodystrophy and insulin resistance, we hypothesized that the disease may be caused by mutations in the LMNA gene. We analyzed five consanguineous Italian families and demonstrated linkage of MAD to chromosome 1q21, by use of homozygosity mapping. We then sequenced the LMNA gene and identified a homozygous missense mutation (R527H) that was shared by all affected patients. Patient skin fibroblasts showed nuclei that presented abnormal lamin A/C distribution and a dysmorphic envelope, thus demonstrating the pathogenic effect of the R527H LMNA mutation.  相似文献   

14.
Mutation analysis of the Fanconi anemia gene FACC.   总被引:9,自引:2,他引:7       下载免费PDF全文
Fanconi anemia (FA) is a genetically heterogeneous autosomal recessive disorder characterized by a unique hypersensitivity of cells to DNA cross-linking agents; a gene for complementation group C (FACC) has recently been cloned. We have amplified FACC exons with their flanking intron sequences from genomic DNA from 174 racially and ethnically diverse families in the International Fanconi Anemia Registry and have screened for mutations by using SSCP analysis. We identified eight different variants in 32 families; three were detected in exon 1, one in exon 4, one in intron 4, two in exon 6, and one in exon 14. Two of the eight variants, in seven families, did not segregate with the disease allele in multiplex families, suggesting that these variants represented benign polymorphisms. Disease-associated mutations in FACC were detected in a total of 25 (14.4%) of 174 families screened. The most frequent mutations were IVS4 + 4 A-->T (intron 4; 12 families) and 322delG (exon 1; 9 families). Other, less common mutations include Q13X in exon 1, R185X and D195V in exon 6, and L554P in exon 14. The polymorphisms were S26F in exon 1 and G139E in exon 4. All patients in our study with 322delG, Q13X, R185X, and D195V are of northern or eastern European or southern Italian ancestry, and 18 of 19 have a mild form of the disease, while the 2 patients with L554P, both from the same family, have a severe phenotype. All 19 patients with IVS4 + 4 A-->T have Jewish ancestry and have a severe phenotype.  相似文献   

15.
We have applied the fluorescence loss of intensity after photobleaching (FLIP) technique to study the molecular dynamics and organization of nuclear lamin proteins in cell lines stably transfected with green fluorescent protein (GFP)-tagged A-type lamin cDNA. Normal lamin A and C proteins show abundant decoration of the inner layer of the nuclear membrane, the nuclear lamina, and a generally diffuse localization in the nuclear interior. Bleaching studies revealed that, while the GFP-tagged lamins in the lamina were virtually immobile, the intranuclear fraction of these molecules was partially mobile. Intranuclear lamin C was significantly more mobile than intranuclear lamina A. In search of a structural cause for the variety of inherited diseases caused by A-type lamin mutations, we have studied the molecular organization of GFP-tagged lamin A and lamin C mutants R453W and R386K, found in Emery-Dreifuss muscular dystrophy (EDMD), and lamin A and lamin C mutant R482W, found in patients with Dunnigan-type familial partial lipodystrophy (FPLD). In all mutants, a prominent increase in lamin mobility was observed, indicating loss of structural stability of lamin polymers, both at the perinuclear lamina and in the intranuclear lamin organization. While the lamin rod domain mutant showed overall increased mobility, the tail domain mutants showed mainly intranuclear destabilization, possibly as a result of loss of interaction with chromatin. Decreased stability of lamin mutant polymers was confirmed by flow cytometric analyses and immunoblotting of nuclear extracts. Our findings suggest a loss of function of A-type lamin mutant proteins in the organization of intranuclear chromatin and predict the loss of gene regulatory function in laminopathies.  相似文献   

16.
Mutations in the lamin A/C gene (LMNA) lead to severe disorders collectively called laminopathies. The mechanisms by which lamin mutations cause the diseases are not clear. Since the mesenchymal lineages, adipose tissue in particular, are mostly affected in laminopathies, the aim of the study was to estimate the effect of LMNA mutations on differentiation of mesenchymal stem cells, adipose tissue stromal cells (ATSCs), into adipose lineages. ATSCs transduced with lentiviral vectors carrying LMNA gene mutations associated with various syndromes (myodystrophy, cardiomyopathy, lipodystrophy, progeroid syndrome) were induced to adipose differentiate. It was found that introduction of genetic constructions with LMNA gene point mutations G465D, R482L, and R527C promote adipogenic differentiation compared to wild-type lamin gene; mutation R471C reduced the differentiation. Introduction of R471C or R527C lamin mutations profoundly increased the expression of adipogenesis markers PPARG, SREBP1, and adipsin. Mutations in A/C lamin gene strongly and variously affect the differentiation of mesenchymal stem cells that probably underlie the pathogenic changes in patients with laminopathies.  相似文献   

17.
Nuclear matrix proteins and hereditary diseases   总被引:1,自引:0,他引:1  
Sjakste N  Sjakste T 《Genetika》2005,41(3):293-298
  相似文献   

18.

Background

LMNA/C mutations have been linked to the premature aging syndrome Hutchinson’s progeria, dilated cardiomyopathy 1A, skeletal myopathies (such as the autosomal dominant variant of Emery-Dreifuss muscular dystrophy and limb-girdle muscular dystrophy), Charcot-Marie-Tooth disorder type 2B1, mandibuloacral dysplasia, autosomal dominant partial lipodystrophy, and axonal neuropathy. Atrioventricular block (AVB) can be associated with several cardiac disorders and it can also be a highly heritable, primitive disease.One of the most common pathologies associated with AVB is dilated cardiomyopathy (DCM), which is characterized by cardiac dilatation and reduced systolic function. In this case, onset has been correlated with several mutations in genes essential for the proper maturation of cardiomyocytes, such as the gene for lamin A/C. However, no clear genotype–phenotype relationship has been reported to date between LMNA/C mutations and cardiomyopathies.

Results

DNA and medical histories were collected from (n?=?11) members of different generations of one family, the proband of which was implanted with a pacemaker for lone, type II AVB. Exome sequencing analysis was performed on three relatives with AVB, and the mutations therein identified validated in a further three AVB-affected family members.In the initial three AVB family members, we identified 10 shared nonsynonymous single-nucleotide variations with a rare or unreported allele frequency in the 1000 Genomes Project database. Follow-up genetic screening in the additional three affected relatives disclosed a correlation between the lone AVB phenotype and the single-nucleotide polymorphism rs56816490, which generates an E317K change in lamin A/C. Although this mutation has already been described by others in a DCM-affected proband with familiarity for AVB and sudden death, the absence of DCM in our large, AVB-affected family is indicative of genotype–phenotype correlation between rs56816490 and a familial, autosomal dominant form of lone AVB.

Conclusions

Screening for G613A in LMNA/C in patients with lone AVB and their relatives might prevent sudden death in families affected by AVB but without familiarity for DCM. Lone AVB is an age-related disease caused by mutations in LMN A/C gene rather than a complication of DCM.
  相似文献   

19.
Camurati-Engelmann disease (CED) [OMIM 131300] is an autosomal dominant sclerosing bone dysplasia recently ascribed to mutations of the transforming growth factor (TGF-beta1) gene on chromosome 19q13.1-q13.3. Five mutations consistently located in the TGF-beta1 propeptide have been hitherto identified in 21 families. Here, we report on TGF-beta1 mutations in one Australian and six European families. Three distinct mutations were identified among seven families: namely, R218H (family 1), R218C (families 2, 6, 7) and C225R (families 3, 4, 5). The three mutations identified in our pedigrees have been previously observed in families of Japanese and Israeli origin and the R218C appears to be the most prevalent mutation worldwide (17/28 reported families). No obvious correlation between the nature of the mutations and the severity of the clinical manifestations could be established, but a marked intrafamilial clinical variability was observed, supporting incomplete penetrance of CED. Interestingly, the polymorphisms in the TGF-beta1 gene showed no correlation with the severity of the disease. We conclude that CED is a clinically variable condition and that this clinical variability is not accounted for by polymorphisms at the TGF-beta1 locus.  相似文献   

20.
Osteogenesis imperfecta (OI, also known as brittle bone disease) is caused mostly by mutations in two type Ⅰ collagen genes, COL1A1 and COL1A2 encoding the pro-α1 (Ⅰ) and pro-α2 (Ⅰ) chains of type Ⅰ collagen, respectively. Two Chinese families with autosomal dominant OI were identified and characterized. Linkage analysis revealed linkage of both families to COL1A2 on chromosome 7q21.3-q22.1. Mutational analysis was carried out using direct DNA sequence analysis. Two novel missense mutations, c.3350A>G and c.3305G>C, were identified in exon 49 of COL1A2 in the two families, respectively. The c.3305G>C mutation resulted in substitution of a glycine residue (G) by an alanine residue (A) at codon 1102 (p.G1102A), which was found to be mutated into serine (S), argine (R), aspartic acid (D), or valine (V) in other families. The c.3350A>G variant may be a de novo mutation resulting in p.Y1117C. Both mutations co-segregated with OI in respective families, and were not found in 100 normal controls. The G1102 and Y1117 residues were evolutionarily highly conserved from zebrafish to humans. Mutational analysis did not identify any mutation in the COX-2 gene (a modifier gene of OI). This study identifies two novel mutations p.G1102A and p.Y1117C that cause OI, significantly expands the spectrum of COL1A2 mutations causing OI, and has a significant implication in prenatal diagnosis of OI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号