首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以38个QPM(或02)和对照普通玉米为实验材料,进行02基因控制赖氨酸超量积累的生化和遗传分析。主要实验结果如下:(1)QPM玉米02基因为隐性的单基因遗传,它控制着胚乳、雄穗和幼苗期叶片中赖氨酸的超量积累,一些修饰因子和遗传背景对胚乳物理性状产生影响;(2)QPM玉米、普通玉米的胚较之胚乳,或者QPM玉米胚乳较之普通玉米胚乳都含有较多的天门冬氮酸、甘氨酸、赖氨酸和精氨酸,含有较少的脯氨酸、谷氨酸、亮氨酸和苯丙氨酸;(3)两种玉米之间,在胚乳蛋白质含量及胚乳可溶性蛋白、醇溶蛋白、谷蛋白的赖氨酸含量方面没有什么不同;(4)已经育成一批QPM或02玉米自交系,并配制出几个强优势杂交组合。  相似文献   

2.
Grains of nine opaque (o) and floury (fl) mutants of maize (Oh43o1, Oh43o2, B79o5, B37o7, W22o10, W22o11, W22o13, Oh43fl1 and Oh43fl2) were examined for the weight proportions of their component tissues and the content of eight nitrogen fractions in their endosperms. A linear regression was found connecting the amounts (mg per endosperm) of zeins and true proteins (crude proteins minus non-protein nitrogen) for the non-opaque2 mutants. The data points connecting zeins to true proteins present in the mature endosperms of six wild-type (+) inbred lines and their o2 versions were located outside (+) or within (o2) the 95% confidence range of the regression line. The data obtained from the developing and mature endosperms of the W22o7 inbred line (Di Fonzo et al., Plant Sci. Lett., 1979, 77) and the floury portion of mature endosperms of three other wild-type inbred lines fell practically on the regression line. The effects of genotype and environmental factors upon the relative accumulation rate of zeins were assessed from the present results and the data taken from the literature concerning the quantitative interdependence between zeins and true proteins in immature and mature endosperms.  相似文献   

3.
优质蛋白玉米胚乳贮存蛋白积累的电泳分析   总被引:5,自引:0,他引:5  
玉米胚乳的22 kD和20 kD醇溶蛋白在授粉后15 天开始积累,编码22 kD 和20 kD醇溶蛋白的结构基因在胚乳发育过程中同时表达。优质蛋白玉米和o2 玉米的胚乳中,22 kD和20 kD醇溶蛋白的合成受到抑制,即o2 基因对22 kD和20 kD醇溶蛋白的合成有负的调节作用。Mo17/o2 和Mo17 胚乳醇溶蛋白的双向电泳结果表明,Mo17/o2 的27 kD、22 kD、20 KD和15 kD醇溶蛋白的合成均受到强烈的抑制。遗系041/o2 和遗系040/o2 胚乳醇溶蛋白的双向电泳结果表明,二者只在高分子量的蛋白质斑点区域有一些细微的差别。可溶性蛋白的SDS-PAGE分析表明,Mo17/o2 胚乳的可溶性蛋白比其同型系Mo17 少38.7 kD 和26.7 kD两条谱带,多27.2 kD和26.1 kD两条谱带。二者出现的可溶性蛋白的差异是o2 基因调控的结果。遗系041/o2 胚乳的可溶性蛋白比其同型系040/o2 多18.6 kD和17.6 kD两条谱带,少40.2 kD 一条谱带,这与o2 基因修饰因子的作用密切关联  相似文献   

4.
The characteristics of storage protein accumulation of maize with qualified protein (MQP) and 02 maize were analysed basing on the genetical and biochemical point of views. The 22 kD and 20 kD zeins in the developing endosperms of maize accumulated 15 days after pollination. The structural genes encoding 22 kD and 20 kD zeins in the developing endosperms were simutaneously expressed. In the endosperms of MPQ and o2 maize the synthesis of 22 kD and 20 kD zeins was suppressed. That is to say, o2 gene negatively regulated the synthesis of 22 kD and 20 kD zeins. Two-dimentional electrophoretic analysis of zeins in the maize endosperms further revealed the effects of o2 gene and its modifiers on the synthesis of zeins. In Mol7 and Mo17/o2 endosperms the synthesis of 27 kD, 22 kD, 20 kD and 15 kD zeins was severely suppressed. In 041/oz and 040/o2 endosperms little difference existed SDS-PAGE analysis of the soluble proteins of Mol 7 and Mo17/o2 endosperms revealted that two bands with molecular weight (MW) of 38.7 kD and 26.7 kD were present in wild type but absent in o2 mutant, while two bands with MW 27.2 kD and 26.1 kD were present in o2 mutant but absent in wild type. These differences were resulted from the effect of o2 gene. In 040/02 and 041/o2 endosperms two bands with MW 18.6 kD and 17.6 kD were present in 041/o2 but absent in 040/02 while one band with MW 40. 2 kD was present in 040/02 and absent in 041/o2, which was closely related to the effects of the modifiers of o2 gene.  相似文献   

5.
Wu Y  Messing J 《PloS one》2012,7(2):e32850

Background

One of the goals of plant breeding is to create crops to provide better nutrition for humans and livestock. Insufficient intake of protein is one of the most severe factors affecting the growth and development of children in developing countries. More than a century ago, in 1896, Hopkins initiated the well-known Illinois long-term selection for maize seed protein concentration, yielding four protein strains. By continuously accumulating QTLs, Illinois High Protein (IHP) reached a protein level 2.5-fold higher than normal maize, with the most increased fraction being the zein protein, which was shown to contain no lysine soon after the long-term selection program initiated. Therefore, IHP is of little value for feeding humans and monogastric animals. Although high-lysine lines of non-vitreous mutants were based on reduced zeins, the kernel soft texture precluded their practical use. Kernel hardness in opaque 2 (o2) could be restored in quality protein maize (QPM) with quantitative trait loci called o2 modifiers (Mo2s), but those did not increase total protein levels.

Methods

The most predominant zeins are the 22- and 19-kDa α-zeins. To achieve a combination of desired traits, we used RNA interference (RNAi) against both α-zeins in IHP and evaluated the silencing effect by SDS-PAGE. Total protein, amino acid composition and kernel texture were analyzed.

Conclusions

The α-zeins were dramatically reduced, but the high total seed protein level remained unchanged by complementary increase of non-zein proteins. Moreover, the residual zein levels still allowed for a vitreous hard seed. Such dramatic rebalancing of the nitrogen sink could have a major impact in world food supply.  相似文献   

6.
Summary Protein and amino acid composition of mature karnels from three allelic proline-requiring mutants in maize, pro 1-1, pro 1-2, and pro 1-3 were analyzed and compared to kernels of the stock A 188 containing the wild type allele. The amount of free proline was specifically reduced in the embryos of all three mutants, while in the endosperm such a reduction was only found for pro 1-2 and pro 1-3 Accumulation of the proline-rich zeins was strongly reduced in the mutants, but in contrast to opaque-2 the reduction affected all major zein polypeptides to the same extent, possibly as a consequence of the defective proline metabolism. Albumins and globulins as well as free amino acids were more abundant in the endosperms of the mutants than in the wild type. Analysis of the albumins and globulins by SDS-PAGE revealed specific increases as well as reductions of certain polypeptides in the endosperms and embryos of the mutants.  相似文献   

7.
Quality protein maize (QPM) is a high lysine-containing corn that is based on genetic modification of the opaque2 (o2) mutant. In QPM, modifier genes convert the starchy endosperm of o2 to the vitreous phenotype of wild type maize. There are multiple, unlinked o2 modifier loci (Opm) in QPM and their nature and mode of action are unknown. We previously identified seven Opm QTLs and characterized 16 genes that are differentially up-regulated at a significant level in K0326Y QPM, compared to the starchy endosperm mutant W64Ao2. In order to further characterize these Opm QTLs and the genes up-regulated in K0326Y QPM, we created a population of 314 recombinant inbred lines (RILs) from a cross between K0326Y QPM and W64Ao2. The RILs were characterized for three traits associated with endosperm texture: vitreousness, density and hardness. Genetic linkage analysis of the RIL population confirmed three of the previously identified QTLs associated with o2 endosperm modification in K0326Y QPM. Many of the genes up-regulated in K0326Y QPM showed substantially higher levels of expression in vitreous compared with opaque RILs. These included genes associated with the upstream regulation of the ethylene response pathway, and a gene encoding a regulatory subunit of pyrophosphate-dependent fructose-6-phosphate 1-phosphotransferase, an adaptive enzyme of the glycolytic pathway.  相似文献   

8.
The opaque-2 (o2) mutation of maize increases lysine content, but the low seed density and soft texture of this type of mutant are undesirable. Lines with modifiers of the soft kernel phenotype (mo2) called “Quality Protein Maize” (QPM) have high lysine and kernel phenotypes similar to normal maize. Prior research indicated that the formation of vitreous endosperm in QPM might involve changes in starch granule structure. In this study, we focused on analysis of two starch biosynthetic enzymes that may influence kernel vitreousness. Analysis of recombinant inbred lines derived from a cross of W64Ao2 and K0326Y revealed that pullulanase activity had significant positive correlation with kernel vitreousness. We also found that decreased Starch Synthase III abundance may decrease the pullulanase activity and average glucan chain length given the same Zpu1 genotype. Therefore, Starch Synthase III could indirectly influence the kernel vitreousness by affecting pullulanase activity and coordinating with pullulanase to alter the glucan chain length distribution of amylopectin, resulting in different starch structural properties. The glucan chain length distribution had strong positive correlation with the polydispersity index of glucan chains, which was positively associated with the kernel vitreousness based on nonlinear regression analysis. Therefore, we propose that pullulanase and Starch Synthase III are two important factors responsible for the formation of the vitreous phenotype of QPM endosperms.  相似文献   

9.
10.
11.
Summary An association is reported between an albuminlike protein (b-70) and the semidominant locus fluory-2 (fl2) which reduces the level of zein polypeptides in the maize endosperm. The protein b-70 is present at low level in wild-type endosperms and derppressed in fl2 endosperms. A correlation between the doses of the fl2 allele and the b-70 level has been found. Moreover a concomitant loss of the regulatory role of fl2 on zein level and on b-70 overproduction is evident when fl2 is genetically associated with o2 and o7, two recessive alleles of other zein regulatory loci. Protein b-70 is located on the membrane of the protein body where zein polypeptides accumulate. The existence of a functional relationship between this protein and the zein-secretory system is suggested or, as an alternative, that b-70 is a type of storage protein different from zeins, repressed in normal endosperms and derepressed by the fl2 allele.Abbreviations DAP days after pollination - ER endoplasmic reticulum - RER rough endoplasmic reticulum - DTT dithiothreitol - EDTA ethylene-diamintetra-acetate - NADH nicotinamide-adenine dinucleotide, reduced - PMSF phenylmethylsulfonyl-fluoride - SDS sodium dodecylsulfate - PAGE polyacrylamide gel electrophoresis - PBS phosphate buffered saline (0.15 M NaCl, 0.01 M Na phosphate, pH 6.8)  相似文献   

12.
Maize endosperms accumulate during development a large amount of storage proteins (zeins). The rate of zein accumulation is under the control of several regulatory genes. Two of these, the opaque-2 and opaque-6 mutants, lower the zein level, thus improving the nutritional quality of maize meals. An endosperm protein of Mr 32 000 (b-32) appears to be correlated with the zein level. The b-32 protein is encoded by the opaque-6 gene which, in turn, is activated by opaque-2. We report the purification, amino-acid composition and peptide map of b-32 protein. Furthermore we demonstrate that the protein exists as a monomer likely located in the soluble cytoplasm. As a step towards the isolation of a complementary-DNA clone for b-32 protein, the purification of its corresponding mRNA is described.Abbreviations b-32 endosperm protein of Mr 32000 - cDNA complementary DNA - EDTA ethylenediaminetetraacetic acid - O2, O6 opaque 2, opaque-6 genes - PMSF phenylmethylsulfonylfluoride - RSP reduced soluble proteins - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

13.
Maize, an important cereal crop, has a poor quality of endosperm protein due to the deficiency of essential amino acids, especially lysine and tryptophan. Discovery of mutants such as opaque-2 led to the development of nutritionally improved maize with a higher concentration of lysine and tryptophan. However, the pleiotropic effects associated with opaque-2 mutants necessitated the development of nutritionally improved hard kernel genotype, the present-day quality protein maize (QPM). The aim of present study was to analyze and compare the temporal profile of lysine and tryptophan in the developing maize kernel of normal, opaque-2 and QPM lines. A declining trend in protein along with tryptophan and lysine content was observed with increasing kernel maturity in the experimental genotypes. However, opaque-2 retained the maximum concentration of lysine (3.43) and tryptophan (1.09) at maturity as compared to QPM (lysine-3.05, tryptophan-0.99) and normal (lysine-1.99, tryptophan-0.45) lines. Opaque-2 mutation affects protein quality but has no effect on protein quantity. All maize types are nutritionally rich at early stages of kernel development indicating that early harvest for cattle feed would ensure a higher intake of lysine and tryptophan. Two promising lines (CML44 and HKI 1105) can be used for breeding high value corn for cattle feed or human food in order to fill the protein inadequacy gap. Variation in lysine and tryptophan content within QPM lines revealed that differential expression of endosperm modifiers with varying genetic background significantly affects nutritional quality, indicating that identification of alleles affecting amino acid composition can further facilitate QPM breeding program.  相似文献   

14.
We have developed methods for quantitative extraction and analysis of zeins from maize (Zea mays L.) flour. Extraction involved solubilization of total endosperm proteins in an alkaline buffer containing SDS and 2-mercaptoethanol with subsequent precipitation of nonzein proteins by the addition of ethanol to 70%. Analysis of these proteins by SDS-PAGE with Coomassie blue staining and by Western blotting and ELISA assay with zein antibodies revealed that this extraction method is more quantitative than the traditional Landry-Moureaux procedure, especially for the β- and γ-zeins. This method was used to extract and analyze the zein content of several `Quality Protein Maize' (QPM) varieties developed by the International Maize and Wheat Improvement Center. QPM varieties contain `modifier genes' that confer a vitreous phenotype on opaque-2 genotypes, while maintaining the elevated levels of lysine and tryptophan characteristic of this mutant. This analysis revealed that the QPM types contain 2 to 4 times the amount of the γ-zein than unmodified opaque-2 or normal maize varieties. Possible relationships between the high expression of the γ-zein and the modified opaque phenotype are discussed.  相似文献   

15.
Twenty-two selected quality protein maize (QPM) lines, including 13 lines developed in India (DMRQPM series) and nine lines released by CIMMYT, Mexico (CML series), were evaluated for their endosperm protein content and quality, besides kernel modification in terms of vitreousness. Endosperm protein contents in 13QPMlines were on par or better than that of the normal maize ‘checks’ (Trishulata and Parkash). The QPM endosperm proteins showed significantly higher % tryptophan as well as EF-1α (a multifunctional protein with a positive and highly significant correlation with lysine content in the endosperm) contents, in comparison with the normal maize genotypes. Evaluation of kernel modification revealed considerable scope for accumulation of endosperm modifiers in some of the QPM lines. Positive and highly significant correlation was revealed between tryptophan and EF-1α contents in the endosperm proteins, whereas the correlations between the quality parameters with kernel modification in the QPM genotypes were found to be non-significant. The study led to the identification of some promising QPM lines, such as DMRQPM-37, DMRQPM-44, CML176, CML142 and CML149, which could be effectively deployed in the QPM breeding programmes.  相似文献   

16.
All crop species have been domesticated from their wild relatives, and geneticists are just now beginning to understand the consequences of artificial (human) selection on agronomic traits that are relevant today. The primary consequence is a basal loss of diversity across the genome, and an additional reduction in diversity for genes underlying traits targeted by selection. An understanding of attributes of the wild relatives may provide insight into target traits and valuable allelic variants for modern agriculture. This is especially true for maize (Zea mays ssp. mays), where its wild ancestor, teosinte (Z. mays ssp. parviglumis), is so strikingly different than modern maize. One obvious target of selection is the size and composition of the kernel. We evaluated kernel characteristics, kernel composition, and zein profiles for a diverse set of modern inbred lines, teosinte accessions, and landraces, the intermediate between inbreds and teosinte. We found that teosinte has very small seeds, but twice the protein content of landraces and inbred lines. Teosinte has a higher average alpha zein content (nearly 89% of total zeins as compared to 72% for inbred lines and 76% for landraces), and there are many novel alcohol-soluble proteins in teosinte relative to the other two germplasm groups. Nearly every zein protein varied in abundance among the germplasm groups, especially the methionine-rich delta zein protein, and the gamma zeins. Teosinte and landraces harbor phenotypic variation that will facilitate genetic dissection of kernel traits and grain quality, ultimately leading to improvement via traditional plant breeding and/or genetic engineering.  相似文献   

17.
Quality Protein Maize (QPM) is a name given to genetically modified opaque-2 maize with hard endosperm. The opaque-2 mutation conditions a reduction in the amount of zein seed storage protein; zeins are deficient in the essential amino acids lysine and tryptophan, and mutant seed have a higher nutritional value. To utilize the potential of opaque-2 maize, elite inbreds can be converted to o2/o2 forms and subsequently to hard endosperm opaque-2. Since opaque-2 is recessive and endosperm specific, conventional backcross procedures to convert elite inbreds to opaque-2 forms are inefficient. To alleviate this problem, a marker-assisted selection procedure was developed for the Texas A&M University Quality Protein Maize breeding program. Hybridization of an O2 cDNA probe to blots of DNA from plants carrying O2 and o2 alleles showed that restriction fragment length polymorphisms (RFLPs) exist between the W64A o2 allele and O2 alleles of Mo17 and TX5855 inbred lines. To identify the opaque2 genotypes in segregating populations, an RFLP marker assay combining the O2 cDNA probe and HindIII-digestion of genomic DNA was developed. The effectiveness of the O2 RFLP marker assay was tested under field conditions using F2 and backcross populations of several hard endosperm opaque-2 lines. A comparison of the genotypes identified by RFLP analysis with the seed phenotypes of the next generation indicated that this procedure is accurate and can be used for identifying O2/O2, O2/o2, and o2/o2 genotypes of individual juvenile plants in breeding populations.  相似文献   

18.
19.
Breeding efforts to obtain more nutritious maize materials aimed at alleviating dietary deficiencies in developing countries have resulted in an improved maize germplasm known as quality protein maize (QPM). Quality protein maize has higher contents of tryptophan, lysine, and leucine than common maize, but suffers from some major agronomic drawbacks found in common inbred maize lines, such as susceptibility to insect pests and fungal and bacterial diseases and herbicide sensitivity. The development of a reproducible and efficient protocol for tissue culture of QPM is expected to solve some of these deficiencies. In this work, we have evaluated different formulations for in vitro induction of morphogenic responses in three QPM lines developed by the International Maize and Wheat Improvement Center (CIMMYT): CML (CIMMYT maize line)-145, CML-176, and CML-186. Only CML-176 and CML-186 have proven to be responsive to the in vitro conditions considered in this work, with CML-176 showing the highest efficiency in regenerable callus formation and growth. N6C1 medium was found to be efficient for in vitro culture of QPM, whereas no plants could be regenerated by using MPC medium. From CML-176 embyogenic calli cultured on N6C1 medium, we were able to regenerate up to 0.3 plants per 500 mg fresh weight (FW) callus. Further modifications in this experimental protocol, including the replacement of 3,6-dichloro-o-anisic acid with 2,4-dichlorophenoxyacetic acid and modification of the N6C1 vitamin balance, significantly increased the regeneration response of the induced calli, with up to 16.8 and 9.3 plants recovered per 500 mg FW callus for CML-176 and CML-186, respectively.  相似文献   

20.
Summary This paper reports that the opaque-6 (o6) mutation of maize, which causes seedling lethality and interferes in the endosperm with the synthesis of zeins and b-32 protein, is a proline requiring mutant functionally allelic to proline-1 (pro-1). Furthermore, immunological studies on the b-32 content of ten independently originated o6 and pro-1 alleles demonstrated that four alleles contain an apparently normal b-32 protein while the others are either devoid of it or contain trace amounts of cross-reacting proteins of lower molecular weight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号