首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Maize, an important cereal crop, has a poor quality of endosperm protein due to the deficiency of essential amino acids, especially lysine and tryptophan. Discovery of mutants such as opaque-2 led to the development of nutritionally improved maize with a higher concentration of lysine and tryptophan. However, the pleiotropic effects associated with opaque-2 mutants necessitated the development of nutritionally improved hard kernel genotype, the present-day quality protein maize (QPM). The aim of present study was to analyze and compare the temporal profile of lysine and tryptophan in the developing maize kernel of normal, opaque-2 and QPM lines. A declining trend in protein along with tryptophan and lysine content was observed with increasing kernel maturity in the experimental genotypes. However, opaque-2 retained the maximum concentration of lysine (3.43) and tryptophan (1.09) at maturity as compared to QPM (lysine-3.05, tryptophan-0.99) and normal (lysine-1.99, tryptophan-0.45) lines. Opaque-2 mutation affects protein quality but has no effect on protein quantity. All maize types are nutritionally rich at early stages of kernel development indicating that early harvest for cattle feed would ensure a higher intake of lysine and tryptophan. Two promising lines (CML44 and HKI 1105) can be used for breeding high value corn for cattle feed or human food in order to fill the protein inadequacy gap. Variation in lysine and tryptophan content within QPM lines revealed that differential expression of endosperm modifiers with varying genetic background significantly affects nutritional quality, indicating that identification of alleles affecting amino acid composition can further facilitate QPM breeding program.  相似文献   

2.
The low nutritive value of maize endosperm protein is genetically corrected in quality protein maize (QPM), which contains the opaque2 gene along with numerous modifiers for kernel hardness. We report here a two generation marker-based backcross breeding program for incorporation of the opaque2 gene along with phenotypic selection for kernel modification in the background of an early maturing normal maize inbred line, V25. Using the flanking marker distances from opaque2 gene in the cross V25×CML176, optimum population size for the BC2 generation was computed in such a way that at least one double recombinant could be obtained. Whole genome background selection in the BC2 generation identified three plants with 93 to 96% recurrent parent genome content. The three BC2F2 families derived from marker identified BC2 individuals were subjected to foreground selection and phenotypic selection for kernel modification. The tryptophan concentration in endosperm protein was significantly enhanced in all the three classes of kernel modification viz., less than 25%, 25–50% and more than 50% opaqueness. BC2F3 lines developed from the hard endosperm kernels were evaluated for desirable agronomic and biochemical traits in replicated trials and the best line was chosen to represent the QPM version of V25, with tryptophan concentration of 0.85% in protein. The integrated breeding strategy reported here can be applied to reduce genetic drag as well as the time involved in a conventional line conversion program, and would prove valuable in rapid development of specialty corn germplasm.  相似文献   

3.
4.
Fifty microsatellite or simple sequence repeat (SSR) markers, spread across the maize genome were used for analyzing a set of 19 elite Quality Protein Maize (QPM) lines, including seventeen lines developed in India and two at CIMMYT, Mexico. Polymorphic profiles for 47 SSR loci have aided in differentiating the QPM inbred lines. The polymorphism information content (PIC) values among the inbreds ranged from 0.06 (umc2229) to 0.70 (umc1071) with an average of 0.45 per primer-pair. The genetic relationships as indicated by the cluster analysis of SSR data were largely in congruence with the known pedigree of the QPM lines. The study resulted in identification of two SSR markers, umc1071 and umc1063 with higher PIC values of 0.70 and 0.64, respectively. The tryptophan content among the genotypes was found to vary considerably. Two genotypes viz., VOL 2 and VOL 8 were found to differ significantly for tryptophan content (0.51% and 0.94%, respectively). Both these QPM genotypes being derived from the same non-QPM parent CM 145, makes them ideal for mapping of modifiers for tryptophan content.  相似文献   

5.
以38个QPM(或02)和对照普通玉米为实验材料,进行02基因控制赖氨酸超量积累的生化和遗传分析。主要实验结果如下:(1)QPM玉米02基因为隐性的单基因遗传,它控制着胚乳、雄穗和幼苗期叶片中赖氨酸的超量积累,一些修饰因子和遗传背景对胚乳物理性状产生影响;(2)QPM玉米、普通玉米的胚较之胚乳,或者QPM玉米胚乳较之普通玉米胚乳都含有较多的天门冬氮酸、甘氨酸、赖氨酸和精氨酸,含有较少的脯氨酸、谷氨酸、亮氨酸和苯丙氨酸;(3)两种玉米之间,在胚乳蛋白质含量及胚乳可溶性蛋白、醇溶蛋白、谷蛋白的赖氨酸含量方面没有什么不同;(4)已经育成一批QPM或02玉米自交系,并配制出几个强优势杂交组合。  相似文献   

6.
The opaque-2 (o2) mutation of maize increases lysine content, but the low seed density and soft texture of this type of mutant are undesirable. Lines with modifiers of the soft kernel phenotype (mo2) called “Quality Protein Maize” (QPM) have high lysine and kernel phenotypes similar to normal maize. Prior research indicated that the formation of vitreous endosperm in QPM might involve changes in starch granule structure. In this study, we focused on analysis of two starch biosynthetic enzymes that may influence kernel vitreousness. Analysis of recombinant inbred lines derived from a cross of W64Ao2 and K0326Y revealed that pullulanase activity had significant positive correlation with kernel vitreousness. We also found that decreased Starch Synthase III abundance may decrease the pullulanase activity and average glucan chain length given the same Zpu1 genotype. Therefore, Starch Synthase III could indirectly influence the kernel vitreousness by affecting pullulanase activity and coordinating with pullulanase to alter the glucan chain length distribution of amylopectin, resulting in different starch structural properties. The glucan chain length distribution had strong positive correlation with the polydispersity index of glucan chains, which was positively associated with the kernel vitreousness based on nonlinear regression analysis. Therefore, we propose that pullulanase and Starch Synthase III are two important factors responsible for the formation of the vitreous phenotype of QPM endosperms.  相似文献   

7.
Breeding efforts to obtain more nutritious maize materials aimed at alleviating dietary deficiencies in developing countries have resulted in an improved maize germplasm known as quality protein maize (QPM). Quality protein maize has higher contents of tryptophan, lysine, and leucine than common maize, but suffers from some major agronomic drawbacks found in common inbred maize lines, such as susceptibility to insect pests and fungal and bacterial diseases and herbicide sensitivity. The development of a reproducible and efficient protocol for tissue culture of QPM is expected to solve some of these deficiencies. In this work, we have evaluated different formulations for in vitro induction of morphogenic responses in three QPM lines developed by the International Maize and Wheat Improvement Center (CIMMYT): CML (CIMMYT maize line)-145, CML-176, and CML-186. Only CML-176 and CML-186 have proven to be responsive to the in vitro conditions considered in this work, with CML-176 showing the highest efficiency in regenerable callus formation and growth. N6C1 medium was found to be efficient for in vitro culture of QPM, whereas no plants could be regenerated by using MPC medium. From CML-176 embyogenic calli cultured on N6C1 medium, we were able to regenerate up to 0.3 plants per 500 mg fresh weight (FW) callus. Further modifications in this experimental protocol, including the replacement of 3,6-dichloro-o-anisic acid with 2,4-dichlorophenoxyacetic acid and modification of the N6C1 vitamin balance, significantly increased the regeneration response of the induced calli, with up to 16.8 and 9.3 plants recovered per 500 mg FW callus for CML-176 and CML-186, respectively.  相似文献   

8.
优质蛋白玉米黄粒系产量配合力及其杂种优势模式的分析   总被引:6,自引:0,他引:6  
番兴明  谭静  黄必华  刘峰 《遗传》2001,23(6):547-552
研究玉米种质的遗传关系及其杂种优势模式对玉米育种者有着极为重要的指导意义.本研究对从国际玉米小麦改良中心(CIMMYT)引入的及国内自育成的10个优质蛋白玉米(QPM)黄粒优良系进行了配合力分析及杂优模式的初步研究.这10个QPM优良系中有5个来自CIMMYT的热带、亚热带系;5个为国内自育成的骨干系.通过部分双列杂交获得45个杂交组合,将这些组合种植在云南省及广西自治区的三种不同生态条件下进行观察鉴定.产量的方差分析结果表明,品种之间、环境之间的差异达到极显著水平,而重复之间不显著;产量的一般配合力差异达极显著水平,而特殊配合力的差异不显著.杂交组合CML166×齐205具有最高产量(10880kg/hm2),杂交组合长631/02×中系096/02具有最低产量(5496kg/hm2).自交系CML161产量的一般配合力效应值最高(1010.53),自交系CML166产量的一般配合力效应值其次(947.11);而自交系中系096/02产量的一般配合力效应值最低(-1119.98).自交系CML194与忻9101/02具有最高的产量特殊配合力效应值(1813.50),自交系CML166与齐205产量的特殊配合力效应值也较高(1272.00);而自交系忻9101/02与齐205产量的特殊配合力效应值最低(-1670.96).根据杂交组合产量性状的配合力分析,可初步将这10个优质蛋白玉米自交系划分为4个杂种优势群和4种杂种优势模式.  相似文献   

9.
The effect of genotypes and texture on the content of proteins in maize grains was examined by assessing absolute amounts of six protein fractions in the whole endosperms of four wild‐type lines with high protein content and four quality protein maize (QPM) varieties and for hand‐dissected hard and soft endosperm regions from eight other lines. As previously reported for six wild‐type lines and their opaque‐2(o2) versions, zeins were predominant for all genetic backgrounds and all types of endosperms. From these data and others the amounts of zeins and true proteins (crude proteins free of non‐protein nitrogen) in developing and mature endosperms of wild‐type lines were correlated. The data points for zeins from hard endosperms lay between the regression line and the upper limit of confidence area. Those for zeins from soft endosperms were located at the lower part of confidence area and on a level with the points corresponding to the most immature endosperms. Furthermore, some data points for zeins from o2 and QPM samples lay near the lower limit while the others were outside the confidence area. This suggested an initial zein accumulation dependent on the genotype at a low relative rate, followed by an accumulation at higher rate. The conditions used for isolating and quantitating zeins are discussed.  相似文献   

10.
Quality Protein Maize (QPM) is a name given to genetically modified opaque-2 maize with hard endosperm. The opaque-2 mutation conditions a reduction in the amount of zein seed storage protein; zeins are deficient in the essential amino acids lysine and tryptophan, and mutant seed have a higher nutritional value. To utilize the potential of opaque-2 maize, elite inbreds can be converted to o2/o2 forms and subsequently to hard endosperm opaque-2. Since opaque-2 is recessive and endosperm specific, conventional backcross procedures to convert elite inbreds to opaque-2 forms are inefficient. To alleviate this problem, a marker-assisted selection procedure was developed for the Texas A&M University Quality Protein Maize breeding program. Hybridization of an O2 cDNA probe to blots of DNA from plants carrying O2 and o2 alleles showed that restriction fragment length polymorphisms (RFLPs) exist between the W64A o2 allele and O2 alleles of Mo17 and TX5855 inbred lines. To identify the opaque2 genotypes in segregating populations, an RFLP marker assay combining the O2 cDNA probe and HindIII-digestion of genomic DNA was developed. The effectiveness of the O2 RFLP marker assay was tested under field conditions using F2 and backcross populations of several hard endosperm opaque-2 lines. A comparison of the genotypes identified by RFLP analysis with the seed phenotypes of the next generation indicated that this procedure is accurate and can be used for identifying O2/O2, O2/o2, and o2/o2 genotypes of individual juvenile plants in breeding populations.  相似文献   

11.
Quality protein maize (QPM) is a high lysine-containing corn that is based on genetic modification of the opaque2 (o2) mutant. In QPM, modifier genes convert the starchy endosperm of o2 to the vitreous phenotype of wild type maize. There are multiple, unlinked o2 modifier loci (Opm) in QPM and their nature and mode of action are unknown. We previously identified seven Opm QTLs and characterized 16 genes that are differentially up-regulated at a significant level in K0326Y QPM, compared to the starchy endosperm mutant W64Ao2. In order to further characterize these Opm QTLs and the genes up-regulated in K0326Y QPM, we created a population of 314 recombinant inbred lines (RILs) from a cross between K0326Y QPM and W64Ao2. The RILs were characterized for three traits associated with endosperm texture: vitreousness, density and hardness. Genetic linkage analysis of the RIL population confirmed three of the previously identified QTLs associated with o2 endosperm modification in K0326Y QPM. Many of the genes up-regulated in K0326Y QPM showed substantially higher levels of expression in vitreous compared with opaque RILs. These included genes associated with the upstream regulation of the ethylene response pathway, and a gene encoding a regulatory subunit of pyrophosphate-dependent fructose-6-phosphate 1-phosphotransferase, an adaptive enzyme of the glycolytic pathway.  相似文献   

12.
By using indirect immunofluorescence and confocal microscopy, we documented changes in the distribution of elongation factor-1[alpha] (EF-1[alpha]), actin, and microtubules during the development of maize endosperm cells. In older interphase cells actively forming starch grains and protein bodies, the protein bodies are enmeshed in EF-1[alpha] and actin and are found juxtaposed with a multidirectional array of microtubules. Actin and EF-1[alpha] appear to exist in a complex, because we observed that the two are colocalized, and treatment with cytochalasin D resulted in the redistribution of EF-1[alpa]. These data suggest that EF-1[alpha] and actin are associated in maize endosperm cells and may help to explain the basis of the correlation we found between the concentration of EF-1[alpha] and lysine content. The data also support the hypothesis that the cytoskeleton plays a role in storage protein deposition. The distributions of EF-1[alpha] actin, and microtubules change during development. We observed that in young cells before the accumulation of starch and storage protein, EF-1[alpha], actin, and microtubules are found mainly in the cell cortex or in association with nuclei.  相似文献   

13.
We have developed methods for quantitative extraction and analysis of zeins from maize (Zea mays L.) flour. Extraction involved solubilization of total endosperm proteins in an alkaline buffer containing SDS and 2-mercaptoethanol with subsequent precipitation of nonzein proteins by the addition of ethanol to 70%. Analysis of these proteins by SDS-PAGE with Coomassie blue staining and by Western blotting and ELISA assay with zein antibodies revealed that this extraction method is more quantitative than the traditional Landry-Moureaux procedure, especially for the β- and γ-zeins. This method was used to extract and analyze the zein content of several `Quality Protein Maize' (QPM) varieties developed by the International Maize and Wheat Improvement Center. QPM varieties contain `modifier genes' that confer a vitreous phenotype on opaque-2 genotypes, while maintaining the elevated levels of lysine and tryptophan characteristic of this mutant. This analysis revealed that the QPM types contain 2 to 4 times the amount of the γ-zein than unmodified opaque-2 or normal maize varieties. Possible relationships between the high expression of the γ-zein and the modified opaque phenotype are discussed.  相似文献   

14.
Quality protein maize (QPM) was created by selecting genetic modifiers that convert the starchy endosperm of an opaque2 (o2) mutant to a hard, vitreous phenotype. Genetic analysis has shown that there are multiple, unlinked o2 modifiers (Opm), but their identity and mode of action are unknown. Using two independently developed QPM lines, we mapped several major Opm QTLs to chromosomes 1, 7 and 9. A microarray hybridization performed with RNA obtained from true breeding o2 progeny with vitreous and opaque kernel phenotypes identified a small group of differentially expressed genes, some of which map at or near the Opm QTLs. Several of the genes are associated with ethylene and ABA signaling and suggest a potential linkage of o2 endosperm modification with programmed cell death.  相似文献   

15.
Molecular genetic approaches to developing quality protein maize   总被引:11,自引:0,他引:11  
Since its development more than two decades ago, Quality Protein Maize (QPM) has been adopted for cultivation in many regions of the developing world. Given the potential benefits of widespread use of QPM, research to better understand the genetic and biochemical mechanisms responsible for its altered kernel texture and protein quality is important. Recent investigations into the improved protein quality of the opaque2 mutant and the genetic mechanisms that can suppress its starchy kernel phenotype provide new insights to support the continued improvement of QPM. Chief among these developments are the use of transgenic approaches to improve nutritional quality and the discovery that an important component of modified endosperm texture in QPM is related to altered starch granule structure.  相似文献   

16.
Lysine is the most limiting essential amino acid for animal nutrition in maize grains. Expression of naturally lysine-rich protein genes can increase the lysine and protein contents in maize seeds. AtMAP18 from Arabidopsis thaliana encoding a microtubule-associated protein with high-lysine content was introduced into the maize genome with the seed-specific promoter F128. The protein and lysine contents of different transgenic offspring were increased prominently in the six continuous generations investigated. Expression of AtMAP18 increased both zein and non-zein protein in the transgenic endosperm. Compared with the wild type, more protein bodies were observed in the endosperm of transgenic maize. These results implied that, as a cytoskeleton binding protein, AtMAP18 facilitated the formation of protein bodies, which led to accumulation of both zein and non-zein proteins in the transgenic maize grains. Furthermore, F1 hybrid lines with high lysine, high protein and excellent agronomic traits were obtained by hybridizing T6 transgenic offspring with other wild type inbred lines. This article provides evidence supporting the use of cytoskeleton-associated proteins to improve the nutritional value of maize.  相似文献   

17.
The texture of corn grains is a fundamental characteristic for the industry as well as for grain producers and processors. To further understand the mechanisms involved in grain hardness, contrasting corn cultivars for grain hardness and protein quality were evaluated. The cultivars were Cateto L237/67 (hard endosperm and low protein value), QPM BR 451 (semi-hard endosperm and high protein value); Bolivia-2 (floury endosperm and low protein value), and Opaque-2 (floury endosperm and high protein value). Evaluations were carried out at 10, 20, 30, 40, 50, and 60 days after pollination in developing corn grains and in the mature grain. In developing grains, evaluation consisted in the determination of the area, percentage of starch granules, distribution of starch granules, and protein bodies in the endosperm. In mature corn grains, the parameters evaluated were: density, percentage of total proteins, levels of lysine and tryptophan, and banding pattern of zeins. The results indicate that the higher physical resistance of corn grains from the cultivars analyzed is influenced by the high percentage of total proteins, high synthesis of 27-kDa zeins, presence of protein bodies, and perfect organization of starch granules in the endosperm, independent of their sizes.  相似文献   

18.
Maize (Zea mays L.) grain is an important feedstock for the ethanol-producing industry. However, little is known about the optimum grain quality for optimizing ethanol yielding efficiencies. We specifically investigated the response of ethanol yields (L Mg?1) to kernel hardness, and its physiological determinant endosperm zein protein profiles, as affected by genotype selection, field nitrogen (N) fertilization, and crop growth environment. We measured ethanol yield and related this to different kernel hardness indicators, kernel composition, and zein profiles. We also described changes in field ethanol yield (L ha?1), by taking into account the crop yield (Mg ha?1). Hard endosperm genotypes always yielded less ethanol than softer endosperm ones per grain mass (L Mg?1). Higher N fertilization rates increased kernel hardness and decreased ethanol yield (L Mg?1) on soft endosperm dented genotypes but had no effect on hard endosperm ones. Ethanol yield was negatively correlated with kernel density, kernel protein concentration, and Z1 and Z2 zein fractions. Within Z2, 15 kDa β-zein explained the largest ethanol yield variation generated by genotypes, N fertilizations, and growth environments. However, and although these differences were as large as 10%, ethanol field yield (L ha?1) was mainly driven by crop yields (r 2 0.98) due to the large crop yield (Mg ha?1) differences observed across treatments. Together, our results helped describe the magnitude that changes in maize kernel hardness can have over ethanol yield, both through genotype selection or crop management. A particular Z2 zein protein rises as relevant for future genetic manipulations of maize ethanol yield determination.  相似文献   

19.
Genetic modifiers of opaque2 convert the soft, starchy endosperm of opaque2 maize mutants to a hard, vitreous phenotype, while maintaining the enhanced lysine content of the grain. Genetic analysis of F2 segregating seeds from crosses of opaque2 by modified opaque2 genotypes indicated that the modifiers are complex traits that act codominantly. We developed two different segregating F2 populations and mapped the modifier loci by restriction fragment length polymorphism (RFLP) analysis. A relationship was found between formation of vitreous endosperm and the locus encoding the gamma-zein storage protein, which maps near the centromere of chromosome 7. Endosperm modification was consistently associated with the presence of two rather than one gamma-zein gene at this locus. A second modifier locus was mapped near the telomere of chromosome 7L.  相似文献   

20.
Genetic modifiers of opaque2 convert the soft, starchy endosperm of opaque2 maize mutants to a hard, vitreous phenotype, while maintaining the enhanced lysine content of the grain. Genetic analysis of F2 segregating seeds from crosses of opaque2 by modified opaque2 genotypes indicated that the modifiers are complex traits that act codominantly. We developed two different segregating F2 populations and mapped the modifier loci by restriction fragment length polymorphism (RFLP) analysis. A relationship was found between formation of vitreous endosperm and the locus encoding the gamma-zein storage protein, which maps near the centromere of chromosome 7. Endosperm modification was consistently associated with the presence of two rather than one gamma-zein gene at this locus. A second modifier locus was mapped near the telomere of chromosome 7L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号