首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
经过多年田间和温室接种抗病性鉴定,从(77-5433×中5)杂交组合花药培养后代中选育出一个兼抗大麦黄矮病、条锈、叶锈和秆锈4种小麦主要病害的新种质遗4212。遗4212的体细胞染色体数为42,在减数分裂中期Ⅰ,在几乎所有的花粉母细胞中都可以观察到21个二价体,这说明遗4212是一个在遗传上业已稳定的整倍体材料。对(遗4212×77-5433)F_1代花粉母细胞的观察表明,遗4212可能是含1对外源中间偃麦草染色体的代换系或具较大中间偃麦草染色体片段的易位系。用基因组原位杂交(genomic in situ hybridization,GISH)对遗4212的有丝分裂中期相、减数分裂后期Ⅰ相和(遗4212×77-5433)F_1代花粉母细胞减数分裂中期Ⅰ、后期Ⅰ进行了检测,确证遗4212含1对外源中间偃麦草染色体。这些结果表明,遗4212是一个小麦一中间偃麦草代换系,其抗病性来自其携带的1对中间偃麦草。  相似文献   

2.
常规染色体观察表明 :原初的小冰麦异附加系TAI 2 7为 2n =44,其中所有的染色体都是中部或近中着丝点染色体 .但后来发现有 2种植株形态不同的后代均有 1对染色体变成小染色体 .经用荧光原位杂交技术 (fluorescenceinsituhybridiza tion ,FISH)检测发现 ,一种变异类型的 1对小染色体是来自冰草 ,另一种变异类型除变异的 1对小染色体来自冰草 ,还有 1对冰草染色体代换了小麦染色体形成异附加代换系 .TAI -2 7及其变异类型均表现高抗大麦黄矮病 (barleyyellowdwarfvirus ,BYDV) .对这种变异发生的原因及变异类型的用途做了简短讨论  相似文献   

3.
小麦背景中黑麦1R染色体的遗传变异   总被引:8,自引:0,他引:8  
运用细胞遗传学方法鉴定了来源于中国春×M27(1R/1D代换系)的花粉植株和F2单株染色体组成。发现7个花粉植株中出现7种染色体组成变异类型,每株呈现一类变异;而27个F2单株中,存在11种染色体组成变异类型,变异频率仅为37.0%,低于花粉植株。花粉植株群体中,观察到一个能稳定向后代传递的小麦/1R小片段易位,但F2群体中未检测到小麦/黑麦易位。表明常规染色体工程结合花药培养是有计划、有目的实现异源染色体小片段向小麦转移的简便、高效、快速途径。  相似文献   

4.
通过基因组原位杂交、重双端体测交及RFLP分析,解析了来自小麦品种"中国春"(Triticum aestivumL.cv."Chinese Spring"(CS))×大麦品种"Betzes"(Hordeum vulgare L.cv."Betzes")杂种后代15份材料的遗传组成,鉴定出6个二体异代换系;对与"中国春"重双端体DDT2A、DDT2B及DDT2D测交的F1代花粉母细胞减数分裂中期染色体构型进行观察,同时以小麦第二部分同源群短臂探针psr131进行RFLP分析,鉴定出一套遗传稳定的小麦-大麦2H二体异代换系2H(A)、2H(B)和2H(D).小麦第二部分同源群短臂探针psr131可作为追踪大麦2H染色体的RFLP标记.从代换系的生长势及其他农艺性状看,大麦2H染色体对小麦染色体2B和2D的补偿作用较好.通过考种观察到携带大麦α淀粉酶抑制蛋白基因的2H染色体导入小麦后,淀粉品质发生了改变,外观品质由原来"中国春"的半粉质转变为代换系的半角质.  相似文献   

5.
澳大利亚CSIRO与中国农业科学院研究人员利用细胞培养将冰草属Thinopyrum intermedium中第7组染色体长臂里的大麦黄矮病毒(BYDV)抗性基因转移到了小麦。该抗性基因来自一个带有7组染色体的二体生物附加系。经一系列杂交、细胞培养和BYDV筛选后,确定了7个细胞培养系。其病毒抗性是通过  相似文献   

6.
小麦-大麦2H异代换系的鉴定   总被引:2,自引:0,他引:2  
通过基因组原位杂交、重双端体测交及RFLP分析,解析了来自小麦品种 “中国春” (Triticum aestivumL. cv. “Chinese Spring” (CS))×大麦品种 “Betzes” (Hordeum vulgare L. cv. “Betzes”)杂种后代15份材料的遗传组成,鉴定出6个二体异代换系;对与 “中国春” 重双端体DDT2A、DDT2B及DDT2D测交的F1代花粉母细胞减数分裂中期染色体构型进行观察,同时以小麦第二部分同源群短臂探针psr131进行RFLP分析,鉴定出一套遗传稳定的小麦-大麦2H二体异代换系2H(A)、2H(B)和2H(D)。小麦第二部分同源群短臂探针psr131可作为追踪大麦2H染色体的RFLP标记。从代换系的生长势及其他农艺性状看,大麦2H染色体对小麦染色体2B和2D的补偿作用较好。通过考种观察到携带大麦a淀粉酶抑制蛋白基因的2H染色体导入小麦后,淀粉品质发生了改变,外观品质由原来“中国春” 的半粉质转变为代换系的半角质。  相似文献   

7.
以中国春3D单体和小麦-长穗偃麦草4E二体异附加系为材料,通过杂交、回交结合染色体鉴定等方法,培育出了一种具有蓝粒标记的小麦4E(3D)单体代换系.该小麦4E(3D)单体代换系籽粒为浅蓝色,能够正常生长,自交结实率为36.1%,其自交后代可分离出深蓝籽粒小麦4E(3D)二体代换系、浅蓝籽粒小麦4E(3D)单体代换系和白粒小麦3D缺体.结果表明,长穗偃麦草4E染色体对小麦3D染色体缺失有一定的补偿功能,对以染色体定向代换方式快速创制蓝粒标记小麦单体系统具有一定的参考价值.  相似文献   

8.
VE161小麦包括具有一对长穗偃麦草染色体的雄性不育代换系,可育附加系和杂育系,杂育系由其代换系×附加系产生,其外源染色体(E染色体)具有促进小麦部分同源染色体配对作用。本报道了VE161小麦本身含E染色体配子的传递率为VE161小麦与普通小麦杂交F2,BC1中分离出含E染色体植株的频率,发现VE161小麦本身含E染色体配子的传递率极高,而在F2和BC1代分离群体中保留或消除E染色体都较为容易,这一特点极利于E染色体促进部分同源染色体配对作用在创造易位系上的应用。  相似文献   

9.
李海凤  刘慧萍  戴毅  黄帅  张军  高勇  陈建民 《遗传》2016,38(11):1020-1029
通过细胞学方法和染色体特异分子标记鉴定六倍体小偃麦(AABBEE)与硬粒小麦(AABB)杂交的自交后代F2和F3植株,探讨长穗偃麦草染色体在硬粒小麦背景中世代间的传递特征,并筛选硬粒小麦-长穗偃麦草E染色体附加系。对218个F2单株染色体数检测表明,2n=28植株占41.7%,2n=29植株占18.3%,其余40.0%植株的染色体数在2n=31~42范围内。分子标记鉴定表明,在F2代2n=29单体附加植株中,不同的长穗偃麦草染色体传递率之间存在明显差异,1E传递率最高,3E和6E传递率最低。在F2代2n=30单株中,1E、4E、7E和5E染色体相互组合产生的双单体多,6E参与组合较少,未检测到2E或3E与其他染色体的组合单株。在1E~7E单体附加株自交后代F3中,E染色体传递率变化范围为9.1%~27.5%,1E传递率最高,6E传递率最低,与F2的传递率一致。从F3代中选育出1E~7E单体附加及少数二体附加,所有单体附加均可育。这些附加E染色体材料将对小麦代换系和易位系的创制提供有益的中间材料。  相似文献   

10.
Z6/陕7859胚培养再生植株的细胞遗传学研究与易位系选育   总被引:6,自引:0,他引:6  
林志珊  钱幼婷 《遗传学报》1999,26(4):377-383
二体附加系Z6携带抗大麦黄矮病毒病基因,为了将其抗性导入小麦,将Z6与普通小麦陕7859杂交,杂种F1经幼胚培养诱导形成再生植株,对再生植株及后代进行抗性鉴定,农艺性状考察及对SC2部分抗病植株花粉母细胞减数分裂期染色体行为进行了观察。结果表明,(1)SC2不同单株间存在染色体数目,结构的变异。(2)同一再生植株后代的不同单株,染色体数目可能相同,但染色体组成及减数分裂期行为可心不同,致使后代抗性  相似文献   

11.
Zhong 5 is a partial amphiploid (2n = 56) between Triticum aestivum (2n = 42) and Thinopyrum intermedium (2n = 42) carrying all the chromosomes of wheat and seven pairs of chromosomes from Th. intermedium. Following further backcrossing to wheat, six independent stable 2n = 44 lines were obtained representing 4 disomic chromosome addition lines. One chromosome confers barley yellow dwarf virus (BYDV) resistance, whereas two other chromosomes carry leaf and stem rust resistance; one of the latter also confers stripe rust resistance. Using RFLP and isozyme markers we have shown that the extra chromosome in the Zhong 5-derived BYDV resistant disomic addition lines (Z1, Z2, or Z6) belongs to the homoeologous group 2. It therefore carries a different locus to the BYDV resistant group 7 addition, L1, described previously. The leaf, stem, and stripe rust resistant line (Z4) carries an added group 7 chromosome. The line Z3 has neither BYDV nor rust resistance, is not a group 2 or group 7 addition, and is probably a group 1 addition. The line Z5 is leaf and stem rust resistant, is not stripe rust resistant, and its homoeology remains unknown.  相似文献   

12.
A barley yellow dwarf virus (BYDV)-resistant line HG295 was selected from a cross between cv. 77-5433 and Zhong 5 after extensive investigation in field, greenhouse and ELISA. Cytological analysis revealed that it was an euploid line and genetically stable. The existence of alien DNA in HG295 was identified by RAPD and Southern hybridization analyses showed that the alien DNAs came from Zhong 5 or Th. intermedium. The differences of BYDV resistance between L1 and HG295 are discussed.  相似文献   

13.
小偃麦附加系Z1和Z2中外源染色体2Ai-2的结构组成@张增燕$中国农业科学院作物育种栽培研究所!北京100081@辛志勇$中国农业科学院作物育种栽培研究所!北京100081@陈孝$中国农业科学院作物育种栽培研究所!北京100081小偃麦;;附加系;;染色体  相似文献   

14.
By the method of combined anther culture and conventional selection, six new BYI)V (barley yellow dwarf vims)-resistant wheat germplasms (2n = 42) were obtained from the crosses between common wheat cv. 77-5433 and Zhong 5, a partial Triticum aestivum-Agrotryron intermedium amphiploid. The six germplasms were comprehensively identified by meiosis pairing analysis, testing cross analysis using monosomic analysis, C-banding, isoelectrofocusing (IEF) of isoenzyme and RAPD analyses. The results indicated that all the germplasms were alien substitution lines carrying resistant genes originated from Zhong 5.  相似文献   

15.
Thinopyrum intermedium (2n = 6x = 42, JJJsJsSS) is potentially a useful source of resistance to wheat streak mosaic virus (WSMV) and its vector, the wheat curl mite (WCM). Five partial amphiploids, namely Zhong 1, Zhong 2, Zhong 3, Zhong 4, and Zhong 5, derived from Triticum aestivum x Thinopyrum intermedium crosses produced in China, were screened for WSMV and WCM resistance. Zhong 1 and Zhong 2 had high levels of resistance to WSMV and WCM. The other three partial amphiploids, Zhong 3, 4, and 5, were resistant to WSMV, but were susceptible to WCM. Genomic in situ hybridization (GISH) using a genomic DNA probe from Pseudoroegneria strigosa (SS, 2n = 14) demonstrated that two partial amphiploids, Zhong 1 and Zhong 2, have almost the identical 10 Th. intermedium chromosomes, including four Js, four J, and two S genome chromosomes. Both of them carry two pairs of J and a pair of Js genome chromosomes and two different translocations that were not observed in the other three Zhong lines. The partial amphiploids Zhong 3, 4, and 5 have another type of basic genomic composition, which is similar to a reconstituted alien genome consisting of four S and four Js genome chromosomes of Th. intermedium (Zhong 5 has two Js chromosomes plus two Js-W translocations) with six translocated chromosomes between S and Js or J genomes. All three lines carry a specific S-S-Js translocated chromosome, which might confer resistance to barley yellow dwarf virus (BYDV-PAV). The present study identified a specific Js2 chromosome present in all five of the Zhong lines, confirming that a Js chromosome carries WSMV resistance. Resistance to WCM may be linked with J or Js chromosomes. The discovery of high levels of resistance to both WSMV and WCM in Zhong 1 and Zhong 2 offers a useful source of resistance to both the virus and its vector for wheat breeding programs.  相似文献   

16.
Barley yellow dwarf virus (BYDV) may cause a serious disease affecting wheat worldwide. True resistance to BYDV is not naturally found in wheat. BYDV resistance genes are found in more than 10 wild relative species belonging to the genera of Thinopyrum, Agropyron, Elymus, Leymus, Roegneria, and Psathyrostachy. Through wide crosses combining with cell culture, use ofph mutants, or irradiation, 3 BYDV resistance genes in Th. intermedium, including Bdv2, Bdv3 and Bdv4, were introgressed into common wheat background. Various wheat-Th, intermedium addition and substitution, translocation lines with BYDV-resistance were developed and characterized, such as 7D-TAi#1 (bearing Bdv2), 7B-7Ai#1, 7D-7E (beating Bdv3), and 2D-2Ai-2 (bearing Bdv4) translocations. Three wheat varieties with BYDV resistance from Th. intermedium were developed and released in Australia and China, respectively. In addition, wheat-Agropyron cristatum translocation lines, wheat-Ag, pulcherrimum addition and substitution lines, and a wheat-Leymus multicaulis addition line (line24) with different resistance genes were developed. Cytological analysis, morphological markers, biochemical markers, and molecular markers associated with the alien chromatin carrying BYDV resistance genes were identified and applied to determine the presence of alien, chromosomes or segments, size of alien chromosome segments, and compositions of the alien chromosomes. Furthermore, some resistance-related genes, such as RGA, P450, HSP70, protein kinases, centrin, and transducin, were identified, which expressed specifically in the resistance translocation lines with Bdv2. These studies lay the foundations for developing resistant wheat cultivars and unraveling the resistance mechanism against BYDV.  相似文献   

17.
Barley yellow dwarf virus (BYDV) resistance in soft red winter wheat (SRWW) cultivars has been achieved by substituting a group 7 chromosome from Thinopyrum intermedium for chromosome 7D. To localize BYDV resistance, a detailed molecular genetic analysis was done on the alien group 7 Th. intermedium chromosome to determine its structural organization. Triticeae group 7 RFLP markers and rye specific repetitive sequences used in the analysis showed that the alien chromosome in the P29 substitution line has distinguishing features. The 350-480 bp rye telomeric sequence family was present on the long arm as determined by Southern and fluorescence in situ hybridization. However, further analysis using a rye dispersed repetitive sequence indicated that this alien chromosome does not contain introgressed segments from the rye genome. The alien chromosome is homoeologous to wheat chromosomes 7A and 7D as determined by RFLP analysis. Presence of the waxy gene on chromosomes 7A, 7B, and 7D but its absence on the alien chromosome in P29 suggests some internal structural differences on the short arm between Th. intermedium and wheat group 7 chromosomes. The identification of rye telomeric sequences on the alien Thinopyrum chromosome and the homoeology to wheat chromosomes 7A and 7D provide the necessary information and tools to analyze smaller segments of the Thinopyrum chromosome and to localize BYDV resistance in SRWW cultivars.  相似文献   

18.
Changes in the cell surface glycoproteins in common wheat 3B-2, Agropyron intermedium and octoploid wheat-wheatgrass Zhong 5 after the inoculation with barley yellow dwarf virus (BYDV) were sdudied using electron microscopy and ruthenium red staining. The results indicated that, after the inoculation with BYDV, different changes in cell surface glycoproreins were observed in the plant species with different levels of resistance. In A. intermediurn which is immune to BYDV, inoculation with BYDV did not cause significant change in cell surface glycoprotein layer. In cotoploid wheat-wheatgrass Zhong 5 which is highly resistent to BYDV, BYDV infection caused significant thickening in most cell surface glycoprotein layer. In common wheat 3B-2 which is susceptible to BYDV, BYDV infection did not cause thickening in cell surface glycoprotein layer, but in most cells, glycoproteins on the cell surface were partially peeled off or disappeared completely. Therefore, it is suggested that the glycoproteins on cell surface play certain roles in BYDV resistance. The phenomenon of the thickening of cell surface glycoprotein layer caused by BYDV infection was possibly a resistant reaction to the virus.  相似文献   

19.
Wheatgrasses (species of Agropyron complex) have previously been reported to be resistant to barley yellow dwarf virus (BYDV). To introgress this resistance into wheat, Triticum aestivum x Thinopyrum (Agropyron) intermedium hybrids were advanced through a backcrossing program and reaction to BYDV, as determined by enzyme-linked immunosorbent assay (ELISA), is reported for the first time in backcross populations of wide hybrids between wheat and wheatgrasses. ELISA values revealed highly resistant to highly susceptible segregants in backcrosses. BYDV resistance was expressed in some backcross derivatives. Continued selection, based on cytology and ELISA in each generation, eliminated most of the unwanted wheatgrass chromosomes and produced self-fertile BYDV resistant wheat lines. The BYDV resistant lines with 2n = 42 had normal chromosome pairing similar to wheat, and their F1 hybrids with wheat had two univalents. DNA analyses showed that the source of alien chromatin in these BYDV resistant wheat lines is distinguishable from that in other Th. intermedium derived BYDV resistant wheat lines. Chromosome pairing and restriction fragment length polymorphism analyses indicated that the 42 chromosome resistant Purdue wheat lines are substitution lines in which chromosome 7D was replaced by a chromosome from Th. intermedium that was carrying gene(s) for BYDV resistance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号