首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 328 毫秒
1.
辣椒株高遗传分析   总被引:7,自引:3,他引:4  
以辣椒矮秆自交系B9431(P1)和高秆自交系‘吉林长椒’(P2)为双亲,构建P1、F1、P1、B1、B2和F2 6个家系世代群体,应用植物数量性状主基因+多基因混合遗传模型对该6个世代群体株高进行多世代联合分析,结果显示:株高遗传符合1对主基因+多基因遗传模型,高秆对矮秆表现为不完全显性,F1代株高的势能比值为0.39,显性程度为0.91。B1、B2和F2群体主基因遗传率分别为20.35%、17.20%和35.29%,多基因遗传率分别为5.08%、19.75%和0;主基因效应表现为负向加性效应,其值为-6.43,显性效应为0;多基因加性效应值和显性效应值分别为-8.89和9.77。研究还表明,主基因与多基因间的基因效应存在一定差异,主基因加性效应值相当于多基因加性效应值的72.33%,主基因无显性效应,显性效应是由多基因控制遗传。  相似文献   

2.
以吴旗黄芥×长安芥菜组合的6个世代P1、P2、F1、B1、B2和F2群体为材料,利用植物数量性状主基因+多基因模型的多世代联合分析方法研究了该组合芥酸含量的遗传特征.结果表明:吴旗黄芥×长安芥菜组合芥酸含量受2对加性-显性-上位性主基因+加性-显性-上位性多基因(E模型)控制.主基因效应中,加性效应大于显性效应,第一对主基因加性效应(da)和显性效应(ha)分别为-4.718 0和4.419 5;第二对主基因的加性效应(db)和显性效应(hb)分别-4.005 8和2.023 7;2对主基因对芥酸含量的贡献差异较大,第二对主基因加性和显性效应之和占第一对主基因加性和显性效应之和的65.98%;2对主基因间存在一定的互作效应(绝对值在0.338 7~3.694 1),其中第一对主基因显性×第二对主基因加性效应(jba)较大,为3.694 1.B1、B2和F2群体芥酸含量主基因遗传率分别为68.83%、44.76%和87.99%;多基因遗传率分别为20.29%、41.21%和0,F2代表现出较高的遗传力,可在早期世代对芥酸含量进行选择.  相似文献   

3.
白菜叶裂数性状主基因+多基因遗传分析   总被引:1,自引:0,他引:1       下载免费PDF全文
以叶片全缘的大白菜自交系(P1)和叶缘深裂的欧洲白菜型油菜自交系(P2)杂交所获得的6个基本世代(P1、P2、F1、B1、B2、F2)为材料,应用主基因+多基因混合遗传模型对白菜叶裂数进行遗传分析。结果表明,白菜的叶裂数受2对加性-显性-上位性主基因+加性-显性多基因的控制,第1对主基因加性效应为-1.154 7,显性效应为-1.516 8;第2对主基因的加性效应为-1.154 8,显性效应为1.034 9;多基因加性效应为0.591 9,显性效应为1.145 2,2对主基因间存在明显的交互作用。B1、B2和F2世代叶裂数的主基因遗传率分别为88.48%、90.40%、93.03%;多基因遗传率分别为4.114%、0、0。B1、B2、F2世代叶裂数表现出较高的主基因遗传率,受环境影响较小。在白菜叶裂数性状的改良中应以主基因为主,并适于早代选择。  相似文献   

4.
苗永美  隋益虎  简兴 《广西植物》2015,35(5):704-708
为了解黄瓜雄花花器的遗传特性,该研究以雄花器官较小的华南型黄瓜二早子为母本,花器较大的加工型黄瓜NC-76为父本,构建4世代遗传群体,并采用多世代联合分离分析方法,分析黄瓜雄花花器性状的遗传特性。结果表明:分离群体的雄花花梗和花冠长2个性状均表现为单峰分布,表明两性状为数量性状且有主基因控制;花梗长性状符合2对完全显性主基因+加性-显性多基因(E-5)模型,花冠长性状符合2对加性-显性-上位性主基因+加性-显性-上位性多基因(E-1)模型;控制花梗长性状的两对主基因的加性效应相等,为0.573,多基因的加性效应和显性效应值相差不大,且均为负向;控制花冠长度性状的2对主基因的加性效应均为0,显性效应分别为-0.226和-0.472,在上位性作用中以加性×加性和显性×显性互作为主,多基因以显性效应为主,正向显性效应值为0.613,大于负向的加性效应值。花梗和花冠长度两个性状在F2群体中主基因遗传率分别为61.04%和69.60%,多基因遗传率均为0。由此看出黄瓜雄花花器性状为数量遗传,遗传率相对较高。该研究结果显示在黄瓜杂交育种中对花器大小选择可以在较早世代选择。  相似文献   

5.
大白菜抽薹性状的主基因+多基因遗传分析   总被引:8,自引:3,他引:5  
以大白菜易抽薹自交系06S1703和耐抽薹自交系06J32形成的P1、P2、F1、F2、B1和B2等6个世代为材料,应用主基因+多基因多世代联合分析方法,对大白菜抽薹性状进行了研究.结果表明,大白菜的抽薹性受2对加性-显性-上位性主基因+加性-显性-上位性多基因控制,其中2对主基因的加性效应值分别为-3.575 8和-13.619,显性效应值分别为-3.755 2和-2.257 7.B1、B2和F2世代的主基因遗传率分别为87.95%、95.13%和96.25%,只在B1群体中检测到多基因效应,遗传率仅为1.39%,说明大白菜的抽薹性是以主基因遗传为主,可以进行早期选择.  相似文献   

6.
雌雄同株黄瓜单性结实性主基因+多基因混合遗传分析   总被引:8,自引:2,他引:6  
以雌雄同株黄瓜强单性结实自交系'6457'和非单性结实自交系'6426'为亲本,建立了5世代联合群体(P1、P2、F1、F2、F2∶3),采用植物数量性状主基因+多基因混合遗传模型对群体的单性结实性进行多世代联合分析.结果表明:雌雄同株黄瓜单性结实性表现为不完全显性遗传,符合D-2遗传模型,受1对加性主基因+加性-显性多基因控制.主基因加性效应值为14.7,多基因加性效应值为20.9,多基因显性效应值为25.8.F2的遗传率为56.6%,F2∶3的遗传率为48.7%.因此,对雌雄同株黄瓜单性结实性的遗传改良,可选择强单性结实性材料,通过杂交、回交转移主基因,达到选育强单性结实性材料目的.  相似文献   

7.
以叶数较少、叶面积较小的烤烟品种丸叶为母本(P1),以叶数较多、叶面积较大的烤烟品种Coker319为父本,构建了6个世代分离群体,利用植物数量性状主基因+多基因混合遗传模型的联合分离分析方法,分析烤烟杂交组合丸叶×Co-ker319叶数、叶面积的遗传效应。结果表明:烤烟的叶数和叶面积均受2对加性-显性-上位性主基因+加性-显性-上位性多基因(E0)控制,其中叶数遗传以加性效应及显性×显性上位性效应为主,叶面积几种遗传效应差不多,其上位性效应>加性效应>显性效应,叶数和叶面积在B1世代的主基因遗传率分别为36.91%和2.13%,多基因遗传率分别为31.00%和19.53%,B2世代的主基因遗传率分别为51.60%和50.92%,多基因遗传率分别为16.84%和13.26%,F2世代的主基因遗传率分别为42.63%和30.32%,多基因遗传率分别为42.08%和12.18%,叶数和叶面积的主基因遗传率较高,适合在早代选择。  相似文献   

8.
野生甜瓜'云甜-930'对白粉病抗性的遗传分析   总被引:2,自引:0,他引:2  
以经过多代自交选育的高抗白粉病材料野生甜瓜'云甜-930'(P1)与感病栽培甜瓜'华莱士'(P2)组配,构建了P1、P2、F1、B1、B2和F2 6个世代,对大棚栽培条件下各世代材料的白粉病自然发病状况进行考察,用植物数量性状主基因+多基因混合遗传模型的多世代联合分析法,研究野生甜瓜'云甜-930'对白粉病的抗性遗传规律.结果显示:野生甜瓜'云甜-930'对白粉病的抗性遗传符合2对加性-显性-上位性主基因+加性-显性-上位性多基因混合遗传模型(E-0),2对主基因的加性效应相等,da和db均为-15.76,2对主基因的显性效应ha和hb分别为14.98和19.87,第2对主基因的显性效应大于第1对;2对主基因互作效应中除了显性×显性效应(l=-7.73)较小外,其它互作效应均较大,加性×加性效应i为31.46,加性×显性效应jab为-26.86,而显性×加性效应jba为-17.07.该组合的B1、B2和F2群体抗病性主基因遗传率分别为73.31%、69.15%和97.61%,多基因遗传率分别为18.83%、25.86%和0,环境变异在2.39%~7.86%之间.研究表明,野生甜瓜'云甜-930'对白粉病的抗性受2对加性-显性-上位性主基因+加性-显性-上位性多基因控制,同时还受到环境的影响.在甜瓜抗白粉病育种中,在F2代主基因的选择效率最高.  相似文献   

9.
株高是油菜重要的株型改良性状之一。油菜株高对提高油菜的产量、抗倒伏能力和机械收获都有非常重要的作用。本文利用株高性状差异较大的半矮杆新种质10D130和常规品种中双11进行杂交,构建6世代遗传分析群体(P1、F1、P2、B1、B2、F2),以主基因+多基因混合遗传模型对该组合株高进行遗传分析。结果表明:10D130?中双11号组合株高受到1对加性-显性-上位性主基因 加性-显性-上位性多基因控制(D模型)。其中,株高性状加性效应值为-8.58,显性效应值为7.44.在B1、B2和F2 3个分离世代群体中主基因遗传率分别为23.52%、0.91%和17.81%,多基因遗传率分别为30.05%、68.05%和39.35%。10D130半矮杆遗传分析揭示在该材料的运用上不仅要考虑主基因的作用、还要考虑多基因与环境对株高性状的影响。  相似文献   

10.
辣椒开花期的主基因+多基因遗传分析   总被引:1,自引:0,他引:1  
应用植物数量性状主基因+多基困混合遗传模型对早熟辣椒‘E100’与‘L101’杂交组合多个世代群体开花期进行了联合分析.结果表明:开花期由两对加性-显性-上位性主基因+加性-显性-上位性多基因的控制;主基因遗传率在B1、B2和F2世代分别为55.27%、53.83%和76.05%;B1、B2和F2世代多基因遗传率分别为34.13%、42.78%和16.94%.  相似文献   

11.
辣椒果实性状主基因+多基因遗传分析   总被引:3,自引:0,他引:3       下载免费PDF全文
以果实性状差异较大的一年生辣椒材料C.annuum B9431(P1)和灌木辣椒材料C.frutescens H108(P2)为亲本,构建4世代群体(P1、P2、F1、F2),应用数量性状主基因+多基因混合遗传模型方法对辣椒6个果实性状进行遗传分析,为辣椒果实性状QTL定位及分子标记辅助育种研究奠定理论基础。结果表明:6个果实性状均符合2对主基因+多基因遗传模型。其中,单果重量、果实纵径、果实横径、果形指数和果肉厚度5个性状均符合E-0模型,即2对加性-显性-上位性主基因+加性-显性-上位性多基因混合遗传模型;果柄长度最佳遗传模型为E-5,即2对完全显性主基因+加性-显性多基因模型。单果重量、果实纵径、果实横径、果形指数、果肉厚度和果柄长度主基因遗传率分别为87.64%、37.67%、82.46%、94.82%、83.33%和40.00%,多基因遗传率分别为7.50%、54.56%、10.53%、0.27%、12.96%和37.78%。  相似文献   

12.
李纪锁  沈火林  石正强 《遗传》2006,28(4):458-462
选择2个番茄红素含量显著不同的鲜食番茄品系,通过P1、P2、F1、F2、B1和B26世代联合分析法,研究分析了番茄红素的遗传规律。结果表明:番茄红素的遗传符合一个主基因和加性-显性-上位性多基因模型,主基因遗传力在B1、B2和F2分别为6.85%、34.78%和58.33%,多基因遗传力在B1、B2和F2分别为58.48%、30.69%和0。   相似文献   

13.
甘蓝型油菜含油量的主基因+多基因遗传效应分析   总被引:13,自引:0,他引:13  
应用多世代联合分析数量性状主基因和多基因混合遗传的统计方法,分析了甘蓝型油菜两个组合的5个世代——亲本P1、P2、F1、F2和F2:3家系材料含油量的遗传效应。结果表明,分离世代F2及F2:3家系含油量次数分布均呈混合的正态分布,符合主基因+多基因的遗传特征。D-2模型是该项研究两个甘蓝型油菜杂交组合含油量的最适遗传模型,含油量的遗传是由一对加性主基因和加-显性多基因共同控制的。组合1(1141Bx垦C1-1)主基因加性效应值为-1.74,表明亲本1141B中主基因位点上的等位基因降低含油量,而亲本垦C1-1中的等位基因增加含油量。多基因加性效应值和显性效应值分别为1.20和-1.93;F2的主基因遗传力和多基因遗传力分别为68.21%和27.17%;F2:3的主基因遗传力和多基因遗传力分别为81.70%和16.80%。组合2(32Bx垦C1-2)主基因加性效应值为-3.74,表明亲本32B中主基因位点上的等位基因降低含油量,而亲本垦C1-2中的等位基因增加含油量。多基因加性效应值和显性效应值分别为-1.99和0.93;F2的主基因遗传力和多基因遗传力分别为66.20%,和28.10%;F2:3的主基因遗传力和多基因遗传力为81.00%和14.90%。两组合在F2:3家系世代含油量的主基因遗传力均较F2高,因此认为高含油量育种中在F2:3家系进行选择效率较高。  相似文献   

14.
甘蓝型油菜芥酸含量的主基因+多基因遗传   总被引:31,自引:2,他引:29  
应用植物数量性状主基因+多基因混合遗传模型对甘蓝型油菜无芥酸品种HSTC  相似文献   

15.
以烟草抗白粉病品种台烟7号为母本,感病品种NC89为父本,构建6个世代的群体,利用主基因 多基因混合遗传模型的分离分析方法,研究烟草白粉病的抗性遗传规律。结果表明,烟草白粉病抗性的遗传是由两对加性-显性-上位性主基因 加性-显性-上位性多基因(E-0模型)控制的。B1、B2和F2世代主基因的遗传率分别为88.05%、32.62%、84.43%,主基因遗传率很大,说明可以在抗病育种早期进行选择;B1、F2世代多基因遗传率均为0.00%,说明烟草白粉病的发生受一定环境影响。  相似文献   

16.
应用植物数量性状主基因+多基因混合遗传模型,对2个龙生型花生高油酸种质与低油酸珍珠豆型品种杂交组合F2的油酸、亚油酸含量及其比值(O/L值)进行遗传分析,结果表明:花生油酸、亚油酸含量的遗传均表现为1对主基因加性-显性模型。控制油酸含量主基因的加性、显性效应值和遗传率在组合I中分别为8.6281、-2.0164和65.26%,在组合II中则分别为10.6638、1.0652和71.39%;控制亚油酸含量主基因的加性、显性效应值和遗传率在组合I中分别为8.0327、1.2858和73.64%,在组合II中则分别为9.0885、-1.0826和71.59%。O/L值的遗传表现为2对主基因加性-显性-上位性模型。2对主基因的加性效应值分别为0.6855、0.6814(组合I)和1.6842、0.8835(组合II),显性效应值分别为-0.6838、0.024(组合I)和-1.6559、-0.5127(组合II);加性×加性效应(i)、加性×显性效应(jab)、显性×加性效应(jba)、显性×显性效应(l)分别为0.6812、0.024、-0.6803、-0.0244(组合I)和0.8822、-0.5124、-0.8594、0.496(组合II);组合I、II主基因遗传率分别为82.57%和88.64%。  相似文献   

17.
玉米株型性状多世代联合遗传分析   总被引:4,自引:0,他引:4  
本文采用P1、P2、F1、F2、B1、B2多世代联合遗传分析方法,研究了玉米株高、穗位高、穗三叶面积、雄穗分枝数和叶形系数等5个株型性状遗传模型,并进行了混合模型参数估计.结果表明:株高、叶面积、雄穗分枝数符合加性-显性-上位性多基因遗传模型,表现为负向超显性;穗位高、叶形系数符合一对加性主基因+加性-显性多基因混合遗传模型,主基因无显性,多基因无上位性.穗位高在B2世代主基因遗传率最大(46.51%),在B1世代多基因遗传率最大(46.71%);叶形系数在F2世代主基因遗传率最大(36.76%),在B1世代多基因遗传率最大(26.31%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号