首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
大白菜抽薹性状的主基因+多基因遗传分析   总被引:8,自引:3,他引:5  
以大白菜易抽薹自交系06S1703和耐抽薹自交系06J32形成的P1、P2、F1、F2、B1和B2等6个世代为材料,应用主基因+多基因多世代联合分析方法,对大白菜抽薹性状进行了研究.结果表明,大白菜的抽薹性受2对加性-显性-上位性主基因+加性-显性-上位性多基因控制,其中2对主基因的加性效应值分别为-3.575 8和-13.619,显性效应值分别为-3.755 2和-2.257 7.B1、B2和F2世代的主基因遗传率分别为87.95%、95.13%和96.25%,只在B1群体中检测到多基因效应,遗传率仅为1.39%,说明大白菜的抽薹性是以主基因遗传为主,可以进行早期选择.  相似文献   

2.
以吴旗黄芥×长安芥菜组合的6个世代P1、P2、F1、B1、B2和F2群体为材料,利用植物数量性状主基因+多基因模型的多世代联合分析方法研究了该组合芥酸含量的遗传特征.结果表明:吴旗黄芥×长安芥菜组合芥酸含量受2对加性-显性-上位性主基因+加性-显性-上位性多基因(E模型)控制.主基因效应中,加性效应大于显性效应,第一对主基因加性效应(da)和显性效应(ha)分别为-4.718 0和4.419 5;第二对主基因的加性效应(db)和显性效应(hb)分别-4.005 8和2.023 7;2对主基因对芥酸含量的贡献差异较大,第二对主基因加性和显性效应之和占第一对主基因加性和显性效应之和的65.98%;2对主基因间存在一定的互作效应(绝对值在0.338 7~3.694 1),其中第一对主基因显性×第二对主基因加性效应(jba)较大,为3.694 1.B1、B2和F2群体芥酸含量主基因遗传率分别为68.83%、44.76%和87.99%;多基因遗传率分别为20.29%、41.21%和0,F2代表现出较高的遗传力,可在早期世代对芥酸含量进行选择.  相似文献   

3.
白菜叶裂数性状主基因+多基因遗传分析   总被引:1,自引:0,他引:1       下载免费PDF全文
以叶片全缘的大白菜自交系(P1)和叶缘深裂的欧洲白菜型油菜自交系(P2)杂交所获得的6个基本世代(P1、P2、F1、B1、B2、F2)为材料,应用主基因+多基因混合遗传模型对白菜叶裂数进行遗传分析。结果表明,白菜的叶裂数受2对加性-显性-上位性主基因+加性-显性多基因的控制,第1对主基因加性效应为-1.154 7,显性效应为-1.516 8;第2对主基因的加性效应为-1.154 8,显性效应为1.034 9;多基因加性效应为0.591 9,显性效应为1.145 2,2对主基因间存在明显的交互作用。B1、B2和F2世代叶裂数的主基因遗传率分别为88.48%、90.40%、93.03%;多基因遗传率分别为4.114%、0、0。B1、B2、F2世代叶裂数表现出较高的主基因遗传率,受环境影响较小。在白菜叶裂数性状的改良中应以主基因为主,并适于早代选择。  相似文献   

4.
以烟草抗白粉病品种台烟7号为母本,感病品种NC89为父本,构建6个世代的群体,利用主基因 多基因混合遗传模型的分离分析方法,研究烟草白粉病的抗性遗传规律。结果表明,烟草白粉病抗性的遗传是由两对加性-显性-上位性主基因 加性-显性-上位性多基因(E-0模型)控制的。B1、B2和F2世代主基因的遗传率分别为88.05%、32.62%、84.43%,主基因遗传率很大,说明可以在抗病育种早期进行选择;B1、F2世代多基因遗传率均为0.00%,说明烟草白粉病的发生受一定环境影响。  相似文献   

5.
以叶数较少、叶面积较小的烤烟品种丸叶为母本(P1),以叶数较多、叶面积较大的烤烟品种Coker319为父本,构建了6个世代分离群体,利用植物数量性状主基因+多基因混合遗传模型的联合分离分析方法,分析烤烟杂交组合丸叶×Co-ker319叶数、叶面积的遗传效应。结果表明:烤烟的叶数和叶面积均受2对加性-显性-上位性主基因+加性-显性-上位性多基因(E0)控制,其中叶数遗传以加性效应及显性×显性上位性效应为主,叶面积几种遗传效应差不多,其上位性效应>加性效应>显性效应,叶数和叶面积在B1世代的主基因遗传率分别为36.91%和2.13%,多基因遗传率分别为31.00%和19.53%,B2世代的主基因遗传率分别为51.60%和50.92%,多基因遗传率分别为16.84%和13.26%,F2世代的主基因遗传率分别为42.63%和30.32%,多基因遗传率分别为42.08%和12.18%,叶数和叶面积的主基因遗传率较高,适合在早代选择。  相似文献   

6.
辣椒果实性状主基因+多基因遗传分析   总被引:3,自引:0,他引:3       下载免费PDF全文
以果实性状差异较大的一年生辣椒材料C.annuum B9431(P1)和灌木辣椒材料C.frutescens H108(P2)为亲本,构建4世代群体(P1、P2、F1、F2),应用数量性状主基因+多基因混合遗传模型方法对辣椒6个果实性状进行遗传分析,为辣椒果实性状QTL定位及分子标记辅助育种研究奠定理论基础。结果表明:6个果实性状均符合2对主基因+多基因遗传模型。其中,单果重量、果实纵径、果实横径、果形指数和果肉厚度5个性状均符合E-0模型,即2对加性-显性-上位性主基因+加性-显性-上位性多基因混合遗传模型;果柄长度最佳遗传模型为E-5,即2对完全显性主基因+加性-显性多基因模型。单果重量、果实纵径、果实横径、果形指数、果肉厚度和果柄长度主基因遗传率分别为87.64%、37.67%、82.46%、94.82%、83.33%和40.00%,多基因遗传率分别为7.50%、54.56%、10.53%、0.27%、12.96%和37.78%。  相似文献   

7.
韩建明  侯喜林  史公军  耿建峰  邓晓辉 《遗传》2007,29(9):1149-1153
应用主基因+多基因6个世代联合分离分析方法, 对不结球白菜SI×秋017组合的叶片重和叶柄重性状进行了分析。结果表明, SI×秋017组合的叶片重性状遗传受1对负向完全显性主基因+加性-显性多基因(D-4)控制, 主基因加性效应为1.8991, 显性效应为-1.8991; 多基因加性效应为-1.2934, 显性效应为1.7933; 势能比值为-1.3865, 显性度为-1.0000; B1、B2和F2世代群体叶片重的主基因遗传率分别为6.98%、4.33% 和36.08%; B1、B2和F2世代群体叶片重的多基因遗传率为16.03%、7.39%和23.96%。叶柄重的遗传受1对加性主基因+加性-显性多基因(D-2)控制, 主基因加性效应为-1.1457, 显性效应为0; 多基因加性效应为1.3472, 多基因显性效应为2.5788; 势能比值为1.9142, 显性度为0。B1、B2和F2世代群体叶柄重的主基因遗传率分别为31.72%、5.27%和57.94%。B1、B2和F2世代群体叶柄重的多基因遗传率分别为0.42%、4.59%和4.80%。对SI×秋017组合叶片重性状的改良要在晚代选择; 对叶柄重的改良要以主基因为主, 可在早代选择。  相似文献   

8.
甜瓜远缘群体果实糖含量相关性状遗传分析   总被引:1,自引:0,他引:1  
以栽培甜瓜0246为母本,野生甜瓜Y101为父本,构建了P1、P2、F1、F2、B1、B26个世代,运用植物数量性状主基因+多基因混合遗传模型进行多世代联合分析,探讨了甜瓜果实糖含量相关性状的遗传特性。结果表明:果糖含量、葡萄糖含量和总糖含量遗传均受两对加性-显性-上位性主基因+加性-显性-上位性多基因模型控制(E-0),主基因在F2中的遗传率分别达到90.32%、82.42%和94.66%。蔗糖含量受一对加性主基因+加性-显性多基因模型控制(D-2),主基因在F2中的遗传率达到83.76%。甜瓜果实糖含量相关性状遗传体系中主基因具有重要作用且环境方差所占比例较小,适宜早代选择。  相似文献   

9.
羽衣甘蓝裂叶相关性状遗传分析   总被引:1,自引:0,他引:1  
以羽衣甘蓝圆叶自交系‘0835’和裂叶自交系‘0819’为亲本,调查P1、P2、F1、F2群体莲座期4个裂叶相关性状表型数据,运用‘四世代主基因+多基因’遗传模型,对叶长、叶宽、叶形指数、叶缘缺刻数4个叶形相关性状进行遗传分析,探讨羽衣甘蓝裂叶相关性状的遗传规律,为羽衣甘蓝裂叶性状遗传、QTL定位及新品种选育奠定基础。结果表明:(1)4个性状均存在一定的杂种优势,其中叶缘缺刻数中亲优势达显著水平,4个性状均存在负向超亲优势。(2)叶长和叶宽均符合E-4模型,即由2对等加性主基因+加性-显性多基因共同控制;叶长主基因遗传率为83.80%,多基因遗传率为1.05%;叶宽主基因遗传率为22.28%,多基因遗传率为61.92%。(3)叶形指数和叶缘缺刻数均符合E-1模型,即由2对加性-显性-上位性主基因+加性-显性多基因控制;叶形指数主基因遗传率为93.73%,多基因遗传率为2.59%;叶缘缺刻数主基因决定了表型变异的91.18%。  相似文献   

10.
普通丝瓜始雌花节位遗传分析   总被引:10,自引:0,他引:10  
选用始雌花节位有差异的普通丝瓜品种配制‘五叶香丝瓜’ב短圆筒丝瓜’(L1×L2)和‘短圆筒丝瓜’ב蛇形丝瓜’(L2×L3)2套组合,通过调查P1、P2、F1、B1、B2和F2植株的始雌花节位,利用主基因 多基因混合遗传模型联合分离分析了始雌花节位遗传规律。结果显示:L1×L2始雌花节位遗传符合2对加性-显性-上位性主基因 加性-显性多基因遗传模型,L2×L3的遗传符合1对加性主基因 加性-显性多基因遗传模型;L1×L2组合的B1、B2和F2群体遗传率(主基因 多基因)分别为66.13%、51.29%和68.27%,L2×L3组合的B1、B2和F2群体遗传率(主基因 多基因)分别为82.02%、64.87%和65.62%;L1×L2组合B1、B2和F2群体的环境方差占总表型方差的比例分别是23.43%、48.69%和31.73%,L2×L3组合B1、B2和F2群体的环境方差占总表型方差的比例分别是34.27%、55.40%和34.38%。结果表明:普通丝瓜始雌花节位是由主基因和多基因控制的数量性状,早熟性(较低的始雌花节位)不太可能通过杂种优势来实现;始雌花节位遗传不稳定,易受环境因素的影响,但定向选择会有较好的效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号