首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
为研究本实验室制备的一株抗蓝舌病病毒8型(BTV-8)VP2蛋白的单克隆抗体(MAb)3G11识别的B细胞抗原表位,利用噬菌体肽库展示技术对3G11识别的抗原表位进行筛选并鉴定。经过4轮淘选后挑取蓝斑测序,测序结果经分析后获得KLLAT序列,与BTV-8 VP2蛋白氨基酸序列比对后获得共同的短肽序列为283LL284;合成4种短肽序列:KLLAA、KALAT、KLAAT和KLLAT,与3G11细胞上清和腹水分别进行间接ELISA鉴定,结果表明,短肽KLLAA和KLLAT与3G11细胞上清及腹水具有较强的结合能力;与24种BTV标准阳性血清反应结果表明,这两种短肽都可与BTV-8阳性血清发生特异性反应;序列分析结果可见,该表位的氨基酸序列283LL284在不同来源的BTV-8毒株间保守,确定283LL284为MAb3G11识别抗原表位的关键氨基酸。本研究为建立8型BTV特异性的免疫学检测方法和相关病毒蛋白的功能研究奠定了基础。  相似文献   

2.
群特异性蓝舌病病毒单克隆抗体的制备和鉴定   总被引:1,自引:0,他引:1  
目的:制备群特异性抗蓝舌病病毒(BTV)单克隆抗体,并对其特性进行鉴定,为建立检测BTV抗原及抗体的ELISA方法奠定基础。方法:用纯化的BTV颗粒为免疫抗原免疫BALB/c鼠,以大肠杆菌表达的VP7蛋白作为筛选抗原,用间接ELISA法筛选杂交瘤细胞株;选取抗体效价最高的一株制备BTV单克隆抗体,以该抗体为捕获抗体与8种不同血清型BTV进行ELISA反应,结果与细胞病变反应进行比对;以该抗体为竞争抗体,与12种不同血清型绵羊BTV抗血清进行竞争ELISA反应,并将结果与参比c-ELISA试剂盒结果进行比对。结果:筛选出5株稳定分泌BTV单克隆抗体的杂交瘤细胞株,并选其中一株(3E2)制备了高纯度的单克隆抗体;该单抗用于检测不同血清型BTV,与细胞病变反应结果完全相符;用于检测不同血清型绵羊BTV抗血清,其结果与参比c-ELISA试剂盒符合率为100%,与鹿流行性出血热病毒抗原和抗体均无交叉反应。结论:制备的BTV单克隆抗体具有良好的群特异性,可用于检测不同血清型BTV抗原及BTV抗体。  相似文献   

3.
为建立蓝舌病病毒(Bluetongue virus,BTV)十二种血清型(血清6、8、10、11、13、14、17、18、19、20、22与23型)特异性实时荧光定量RT-PCR(qRT-PCR)检测方法,根据GenBank公布的十二种BTV血清型毒株的基因节段2序列,选择高度保守区域,设计每种BTV血清型的扩增引物与TaqMan探针;以十二种血清型BTV参考毒株的cDNA为模板,进行引物的筛选,建立BTV血清型特异性qRT-PCR检测方法;对检测方法的灵敏度、特异性与重复性进行验证,分别以含有50、100与200个BTV噬斑形成单位(Plaque forming unit,PFU)的模拟BTV阳性血液样本为检测对象,进行检测效果的评估.实验结果表明,建立的BTV血清型特异性qRT-PCR检测方法具有良好的灵敏度和特异性,对不同血清型BTV核酸拷贝数的检出下限在12拷贝/μL(BTV-8)至57拷贝/μL(BTV-14)之间;对我国反刍动物上广泛流行的流行性出血病病毒、中山病病毒与阿卡斑病毒核酸的检测结果均为阴性.反应具有良好的重复性,组内Ct值的变异系数在0.92%至1.96%之间,组间Ct值的变异系数在0.26%至1.62%之间.对模拟BTV阳性血液样本的检测结果显示,BTV血清型特异性qRT-PCR可有效检测含50个PFU(噬斑形成单位)的BTV血液样本.本研究建立的十二种BTV血清型特异性qRT-PCR定型方法具有特异性强、灵敏度高和耗时少等优点,可用于动物感染BTV血清型的诊断.  相似文献   

4.
【背景】蓝舌病病毒(Bluetongue Virus,BTV)是一种侵染反刍动物的虫媒病毒,基因重配可引起病毒的快速变异。【目的】通过我国强致病性BTV-16型毒株与弱致病性BTV-4型毒株间Seg-2与Seg-6基因节段的重配,探讨病毒基因重配与表型变异之间的关系。【方法】采用全长cDNA扩增与高通量测序获取BTV-16/V158的全基因组序列,构建病毒的真核表达质粒,通过免疫荧光与WesternBlot检测目的蛋白表达;通过RT-PCR、体外转录与细胞转染等方法建立BTV反向遗传体系并获取基因重配病毒;通过蚀斑分析、增殖曲线分析与血清中和试验,比较亲本毒株与基因重配病毒在生物学特性上的差异。【结果】获取的BTV-16/V158毒株基因组大小为19 186 bp,与中国和印度BTV-16型毒株具有最近的亲缘关系;将表达BTV VP1、VP3与NS2的真核表达质粒转染细胞,检测到目的蛋白的表达;将BTV的7种真核表达质粒与基因组ssRNA共转染BHK-21细胞,成功拯救出与亲本毒株生物学特性一致的病毒;将BTV-16/V158毒株的Seg-2与Seg-6替换为BTV-4/YTS4毒株的对应基因节段,拯救出基因重配病毒BTV-16/V158-RG (BTV-4/S2,S6);与亲本病毒相比较,基因重配病毒在BHK-21细胞上形成的蚀斑变小,增殖能力减弱,血清型由BTV-16型转化为BTV-4型。【结论】建立了我国流行BTV-16型毒株的反向遗传体系,BTVSeg-2与Seg-6的基因重配可引起病毒在细胞上增殖能力的改变与血清型改变。研究结果为BTV基因重配致病毒变异与新型基因工程疫苗的研究提供了基础。  相似文献   

5.
【背景】蓝舌病病毒(Bluetongue virus,BTV)是一种严重危害反刍动物的虫媒病毒,我国存在12种血清型BTV (BTV-1、-2、-3、-4、-5、-7、-9、-12、-15、-16、-21和-24)的流行。【目的】建立12种血清型BTV的RT-qPCR定型方法,为BTV的诊断与流行病学研究提供技术保障。【方法】根据我国流行BTV基因节段2 (Seg-2)序列设计引物和TaqMan探针,对引物的特异性与敏感性进行评估;以12种血清型BTV毒株和核酸阳性血液样本验证建立的血清型RT-qPCR检测方法;将其应用于库蠓与动物血液样本中BTV的定型。【结果】建立的BTV血清型RT-qPCR检测方法具有良好的特异性与灵敏性,反应的扩增效率(E)值90.3%,相关系数(R2)值在0.991-0.999之间,对12种血清型BTV核酸的检测下限在25-48拷贝之间。对165株BTV的RT-qPCR定型结果与病毒的Seg-2测序鉴定结果一致;对194份采集于哨兵动物的BTV核酸阳性血液样本的RT-qPCR定型结果与感染动物上分离BTV的血清型一致。采用建立的方法,从2019年云南省师宗县与景洪市采集的库蠓与牛血液样本中鉴定出6种血清型的BTV(BTV-1、-2、-4、-5、-16和-24)。【结论】研究建立的12种BTV血清型RT-qPCR定型方法具有特异、敏感和省时的优点,可用于媒介与动物感染BTV的血清型定型,具有良好的应用与推广价值。  相似文献   

6.
为监测云南边境地区虫媒库蠓蓝舌病病毒携带情况,本研究对2013年-2017年从云南6个口岸及周边地区采集到的约5 400只库蠓样本,分180组。采用荧光定量RT-PCR检测、鸡胚和细胞分离、目的基因克隆测序分析和间接免疫荧光试验等进行病毒分离与鉴定。结果显示:采集库蠓样本中有20组检出蓝舌病病毒核酸,检出率为11.11%(20/180);接种后有1份样本能导致鸡胚胚体充血出血和死亡以及BHK-21细胞呈现明显的细胞病变;RT-PCR能从感染细胞样本中扩增出蓝舌病病毒VP7基因特异性片段,且该片段序列与国外BTV-1毒株相应序列的相似性达95%~99%;间接免疫荧光试验显示分离病毒能与BTV-1抗体发生特异性结合。结果表明,云南边境地区库蠓携带有蓝舌病病毒,且为BTV-1,因此应加强对云南边境地区蓝舌病的预防与控制。  相似文献   

7.
为了研制小反刍兽疫病毒(PPRV)与蓝舌病病毒(BTV)双重荧光RT-PCR快速检测试剂盒,根据GenBank公布的小反刍兽疫病毒、蓝舌病病毒的基因序列,设计两套特异性的引物和探针,建立基于Taqman探针的双重荧光RT-PCR快速检测小反刍兽疫病毒与蓝舌病病毒的方法。实验结果表明,该方法特异性好、灵敏度高,检测最低浓度为10拷贝/μL数量级阳性标准品。通过对临床样品的检测,证实本研究建立的检测方法具有较好的临床应用价值。  相似文献   

8.
目的:建立检测7F型肺炎链球菌荚膜多糖的方法(enzyme-linked immunosorbent assay,ELISA),检测发酵过程中多糖的浓度。方法:包被物为7F型肺炎链球菌多糖,竞争物为待测多糖,建立间接竞争ELISA方法,并验证其准确性和精密度。结果:最佳多糖包被质量浓度为2.5ug/ml,多糖抗体血清稀释度为1:8×104。在检测范围为2.5~30μg/m L时呈线性相关,7F的最低检测限为1.5μg/m L。回归方程为B/B0=-0.4075 Pn7F+0.7632,R2=0.9952.样品加标回收率为95.13%-105%。结论:本研究新建的ELISA方法准确性和精密度较好,能特异性地检测7F型肺炎球菌多糖。  相似文献   

9.
目的 制备汉滩病毒(Hantaan virus, HTNV)PS-6株小鼠单克隆抗体(monoclonal antibody, mAb),建立HTNV抗原双抗体夹心ELISA检测方法,验证方法的检测性能并初步应用于疫苗抗原含量检测。方法 以HTNV PS-6株灭活全病毒原液作为免疫原,采用小鼠杂交瘤融合技术,筛选mAb杂交瘤细胞株,制备mAb;用间接ELISA测定mAb效价;用Western blot鉴定mAb特异性;用间接ELISA测定mAb相对亲和力;经抗体配对筛选,建立双抗体夹心ELISA病毒抗原检测方法。以I型肾综合征出血热疫苗标准品作为定量标准,验证该方法的检测限、线性范围、特异性、准确度、精密度;对6批次I型肾综合征出血热灭活疫苗原液进行检测,初步验证该方法的适用性。结果 获得4株稳定分泌抗HTNV PS-6特异性抗体的阳性杂交瘤细胞株:4B2、3H8、5D7及2A7;间接ELISA检测腹水抗体效价均在1×106~1×106~1×107;Western blot鉴定4株mAb均能特异性识别HTNV PS-6;相对亲和力为4B2>5D7>3H8>2A7;抗体ELISA配对筛选后,选用5D7作为包被抗体,4B2作为标记抗体,包被抗体工作浓度为10μg/mL,HRP标记抗体工作浓度为1∶5 000。该方法对HTNV PS-6抗原检测限为0.039 1μg/mL;检测线性范围为0.078 1~2.500 0μg/mL,R7;Western blot鉴定4株mAb均能特异性识别HTNV PS-6;相对亲和力为4B2>5D7>3H8>2A7;抗体ELISA配对筛选后,选用5D7作为包被抗体,4B2作为标记抗体,包被抗体工作浓度为10μg/mL,HRP标记抗体工作浓度为1∶5 000。该方法对HTNV PS-6抗原检测限为0.039 1μg/mL;检测线性范围为0.078 1~2.500 0μg/mL,R2> 0.97;检测与I型肾综合征出血热疫苗生产主要原辅料成分、II型肾综合征出血热疫苗、森林脑炎疫苗及甲肝疫苗均无交叉反应;准确度验证,病毒抗原回收率在95.8%~110.5%之间;试验内和试验间精密度,CV分别在6.72%~8.03%、8.24%~9.70%之间。用该方法检测6批次I型肾综合征出血热灭活疫苗原液,结果均呈剂量依赖性。结论 成功制备HTNV PS-6株mAb,建立病毒抗原双抗体夹心ELISA抗原检测方法,方法准确、可靠,可初步应用于I型肾综合征出血热灭活疫苗科研、生产过程病毒抗原检测。  相似文献   

10.
为建立检测血清4型禽腺病毒(FAdV-4)抗体快捷特异方法,本研究首先分别构建含FAdV-4纤突蛋白Fiber-1和Fiber-2的两个重组杆状病毒rBv-Fiber-1和rBv-Fiber-2。在利用IFA以及Western blot鉴定重组杆状病毒分别高效表达Fiber-1和Fiber-2蛋白的基础上,以Ni柱纯化蛋白,并作为特异性识别FAdV-4抗体的包被抗原构建间接ELISA方法。特异性试验表明,间接ELISA仅特异地检出FAdV-4阳性血清,而不与Ⅰ群其他血清型禽腺病毒及其他禽源病毒阳性血清反应。间接ELISA检测灵敏度高于常规IFA方法,批间和批内重复性变异系数均小于10%。临床血清检测结果表明,间接ELISA可有效检出感染FAdV-4或免疫FAdV-4灭活疫苗的鸡群中抗Fiber抗体,且检测结果与BioChek商品化ELISA试剂盒一致。结果表明,本研究利用杆状病毒系统表达的Fiber蛋白及基于表达产物所构建的间接ELISA方法在FAdV-4感染预警和免疫评估有良好的应用前景  相似文献   

11.
Bluetongue (BT) is an arbovirus transmitted disease by bites of the genus Culicoides and infects wild and domestic ruminants particularly in sheep. As an important outer shell protein which defines BTV serotypes, VP2 has been shown to be an ideal target antigen for identification of different BTV serotypes. In order to prepare a monoclonal antibody (mAb) against the VP2 protein of BTV-4, the corresponding encoding gene L2 was divided into three segments and then cloned into pET-28a (+) and pMAL-c5X vectors to generate recombinant plasmids, which were expressed in Escherichia coli BL21 (DE3) as histidine (His)-tagged (His-4A/4B/4C) and maltose-binding protein (MBP)-tagged (MBP-4A/4B/4C) fusion proteins. After affinity purification of His-4A/4B/4C with Ni-NTA agarose and MBP-4A/4B/4C with amylose resin, His-4A/4B/4C were used to immunize BALB/mice and MBP-4A/4B/4C were used to screen for mAb-secreting hybridomas. Five hybridoma cell lines stably secreting mAbs against different VP2 segments were obtained, in which 4A-1G7 and 4B-1B6 could recognize BTV-4 and also cross-react with other BTV serotypes. With the joint action of the two mAbs, BTV-4 and BTV-20 infection would be distinguished from other BTV serotypes. The successful preparation of recombinant VP2 segments and mAbs provides valuable materials that can be used in serological diagnosis of BTV-4.  相似文献   

12.

Background

Bluetongue virus (BTV) is an economically important, arthropod borne, emerging pathogen in Europe, causing disease mainly in sheep and cattle. Routine vaccination for bluetongue would require the ability to distinguish between vaccinated and infected individuals (DIVA). Current vaccines are effective but are not DIVA. Virus-like particles (VLPs) are highly immunogenic structural mimics of virus particles, that only contain a subset of the proteins present in a natural infection. VLPs therefore offer the potential for the development of DIVA compatible bluetongue vaccines.

Methodology/Principal Findings

Merino sheep were vaccinated with either monovalent BTV-1 VLPs or a bivalent mixture of BTV-1 VLPs and BTV-4 VLPs, and challenged with virulent BTV-1 or BTV-4. Animals were monitored for clinical signs, antibody responses, and viral RNA. 19/20 animals vaccinated with BTV-1 VLPs either alone or in combination with BTV-4 VLPs developed neutralizing antibodies to BTV-1, and group specific antibodies to BTV VP7. The one animal that showed no detectable neutralizing antibodies, or group specific antibodies, had detectable viral RNA following challenge but did not display any clinical signs on challenge with virulent BTV-1. In contrast, all control animals'' demonstrated classical clinical signs for bluetongue on challenge with the same virus. Six animals were vaccinated with bivalent vaccine and challenged with virulent BTV-4, two of these animals had detectable viral levels of viral RNA, and one of these showed clinical signs consistent with BTV infection and died.

Conclusions

There is good evidence that BTV-1 VLPs delivered as monovalent or bivalent immunogen protect from bluetongue disease on challenge with virulent BTV-1. However, it is possible that there is some interference in protective response for BTV-4 in the bivalent BTV-1 and BTV-4 VLP vaccine. This raises the question of whether all combinations of bivalent BTV vaccines are possible, or if immunodominance of particular serotypes could interfere with vaccine efficacy.  相似文献   

13.
An immunoaffinity chromatography (IAC) method was optimized for the selective capture of bluetongue virus (BTV) from blood samples and isolation of the virus in cell culture. The antibody against BTV core particles (lacking the outer capsid proteins VP2 and VP5) was used for the optimization of IAC technique. The antibody against BTV core particle was conjugated with Protein A-virus complex and the complex was dissociated using elution buffer (4 M MgCl2 with 75 mM HEPES, pH 6.5). The optimized IAC method specifically purified the BTV without capturing other commonly infecting small ruminant’s viruses like gaotpox virus (GTPV), sheeppox virus (SPPV), Peste des petits ruminants virus (PPRV) and Foot and mouth disease virus (FMDV). The blood samples (n?=?22), positive for BTV antigen in sandwich-ELISA were attempted for virus isolation in the BHK-21 cell using the optimized IAC method. A total of seven BTV were isolated by selective capturing of the virion particles. The isolated viruses were characterized by RNA-PAGE, sequence analysis and serum neutralization test (SNT). Electropherotypic analysis of viral dsRNA in the RNA-PAGE revealed the presence of ten dsRNA segments characteristic of BTV. Out of seven isolates, four isolates were identified as BTV-1 and three isolates were identified as BTV-16 based on nucleotide sequences of segment-2. Phylogenetic analysis of segment-2 nucleotide sequence segregated BTV-1 and BTV-16 isolates to monophyletic cluster at close proximity to other eastern topotype. In SNT, hyperimmune serum (HIS) against BTV-1 neutralized the four BTV-1 isolates up to a titer?>?256 and HIS against BTV-16 neutralized the three BTV-16 isolates up to a titer?>?128. The IAC technique will be useful for the selective capture of BTV from mixed infection (BTV with other small ruminant’s viruses) and isolation from blood sample having low viral load by enrichment.  相似文献   

14.
Bluetongue virus (BTV) is the causative agent of a major disease of livestock (bluetongue). For over two decades, it has been widely accepted that the 10 segments of the dsRNA genome of BTV encode for 7 structural and 3 non-structural proteins. The non-structural proteins (NS1, NS2, NS3/NS3a) play different key roles during the viral replication cycle. In this study we show that BTV expresses a fourth non-structural protein (that we designated NS4) encoded by an open reading frame in segment 9 overlapping the open reading frame encoding VP6. NS4 is 77-79 amino acid residues in length and highly conserved among several BTV serotypes/strains. NS4 was expressed early post-infection and localized in the nucleoli of BTV infected cells. By reverse genetics, we showed that NS4 is dispensable for BTV replication in vitro, both in mammalian and insect cells, and does not affect viral virulence in murine models of bluetongue infection. Interestingly, NS4 conferred a replication advantage to BTV-8, but not to BTV-1, in cells in an interferon (IFN)-induced antiviral state. However, the BTV-1 NS4 conferred a replication advantage both to a BTV-8 reassortant containing the entire segment 9 of BTV-1 and to a BTV-8 mutant with the NS4 identical to the homologous BTV-1 protein. Collectively, this study suggests that NS4 plays an important role in virus-host interaction and is one of the mechanisms played, at least by BTV-8, to counteract the antiviral response of the host. In addition, the distinct nucleolar localization of NS4, being expressed by a virus that replicates exclusively in the cytoplasm, offers new avenues to investigate the multiple roles played by the nucleolus in the biology of the cell.  相似文献   

15.
16.
In mid September 2008, clinical signs of bluetongue (particularly coronitis) were observed in cows on three different farms in eastern Netherlands (Luttenberg, Heeten, and Barchem), two of which had been vaccinated with an inactivated BTV-8 vaccine (during May-June 2008). Bluetongue virus (BTV) infection was also detected on a fourth farm (Oldenzaal) in the same area while testing for export. BTV RNA was subsequently identified by real time RT-PCR targeting genome-segment (Seg-) 10, in blood samples from each farm. The virus was isolated from the Heeten sample (IAH “dsRNA virus reference collection” [dsRNA-VRC] isolate number NET2008/05) and typed as BTV-6 by RT-PCR targeting Seg-2. Sequencing confirmed the virus type, showing an identical Seg-2 sequence to that of the South African BTV-6 live-vaccine-strain. Although most of the other genome segments also showed very high levels of identity to the BTV-6 vaccine (99.7 to 100%), Seg-10 showed greatest identity (98.4%) to the BTV-2 vaccine (RSAvvv2/02), indicating that NET2008/05 had acquired a different Seg-10 by reassortment. Although Seg-7 from NET2008/05 was also most closely related to the BTV-6 vaccine (99.7/100% nt/aa identity), the Seg-7 sequence derived from the blood sample of the same animal (NET2008/06) was identical to that of the Netherlands BTV-8 (NET2006/04 and NET2007/01). This indicates that the blood contained two different Seg-7 sequences, one of which (from the BTV-6 vaccine) was selected during virus isolation in cell-culture. The predominance of the BTV-8 Seg-7 in the blood sample suggests that the virus was in the process of reassorting with the northern field strain of BTV-8. Two genome segments of the virus showed significant differences from the BTV-6 vaccine, indicating that they had been acquired by reassortment event with BTV-8, and another unknown parental-strain. However, the route by which BTV-6 and BTV-8 entered northern Europe was not established.  相似文献   

17.
A competitive enzyme-linked immunosorbent assay (C-ELISA) has been developed and standardized for the detection of antibodies to the rinderpest virus (RPV) in sera from cattle, sheep, and goats. The test is specific for rinderpest because it does not detect antibodies to peste-des-petits-ruminants virus (PPRV). The test depends on the ability of the monoclonal antibody (MAb) directed against the hemagglutinin (H) protein of RPV to compete with the binding of RPV antibodies in the positive serum to the H protein of this virus. This MAb recognized a region from amino acids 575 to 583 on the H protein of RPV that is unique to the RPV H protein and is not present on the hemagglutinin-neuraminidase protein of PPRV. Another C-ELISA (peptide C-ELISA) was set up using this specific region as an antigen. A threshold value of 64.4% inhibition was established for the RPV C-ELISA, with 90 known RPV-negative and 30 RPV-positive serum samples. Using common serum samples, a cutoff value of 43.0% inhibition for the peptide C-ELISA was established. Based on statistical analysis, the overall sensitivity and specificity of the RPV C-ELISA, relative to those of a commercial kit, were found to be 90.00% and 103.33%, respectively. However, the sensitivity and specificity of the peptide C-ELISA were found to be 180.00% and 73.33%, respectively. Although a common MAb in 2 new C-ELISA systems was used, variation in their percent inhibition, due to the use of different antigens, was observed. Taking into consideration the difference in percent inhibition of the 2 described assays and the commercial kit (50%), it was found that the RPV C-ELISA and the peptide C-ELISA are more specific and sensitive tools than the commercial kit for assessing herd immune status and for epidemiologic surveillance.  相似文献   

18.
Four adult black-tailed deer (Odocoileus hemioneus columbianus) and five fawns were inoculated with bluetongue virus (BTV) and one adult deer was inoculated with epizootic hemorrhagic disease (EHD) virus to produce clinical signs and lesions of hemorrhagic disease. Serologic response was monitored using the agar gel immunodiffusion (AGID) test and the competitive enzyme-linked immunosorbent assay (C-ELISA). Embryonating chicken eggs and vero cells were used to detect viremia. No animal exhibited clinical or pathologic signs of hemorrhagic disease. Bluetongue viremia was detected as early as 2 days post-inoculation (DPI-2) and in some animals, persisted until at least DPI-12. The earliest detection of BTV antibodies using the AGID was DPI-8. Two adult deer remained seropositive for BTV antibodies for > 9 mo and 1 yr, respectively, using both the AGID and C-ELISA tests. We observed cross reactions between BT and EHD antibodies using the AGID tests. Also, the AGID test did not consistently detect exposure to BTV. Viremia was not detected in the deer inoculated with EHD although this animal was AGID positive between DPI-6 and DPI-49.  相似文献   

19.
The serotypes of bluetongue virus (BTV) are classified by differences in neutralization commonly induced by P2, a major surface protein. A BTV serotype 13 (BTV-13) monoclonal antibody, 4B13-207A, immunoprecipitated P2s of BTV-13 and BTV-2 and also neutralized both viruses. These data indicate that P2s from BTV-13 and BTV-2 share a common neutralizing epitope that is not detected by neutralizing polyclonal antibody to BTV-13.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号