首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 240 毫秒
1.
Many wild ruminants such as Spanish ibex (Capra pyrenaica) are susceptible to Bluetongue virus (BTV) infection, which causes disease mainly in domestic sheep and cattle. Outbreaks involving either BTV serotypes 1 (BTV-1) and 8 (BTV-8) are currently challenging Europe. Inclusion of wildlife vaccination among BTV control measures should be considered in certain species. In the present study, four out of fifteen seronegative Spanish ibexes were immunized with a single dose of inactivated vaccine against BTV-1, four against BTV-8 and seven ibexes were non vaccinated controls. Seven ibexes (four vaccinated and three controls) were inoculated with each BTV serotype. Antibody and IFN-gamma responses were evaluated until 28 days after inoculation (dpi). The vaccinated ibexes showed significant (P<0.05) neutralizing antibody levels after vaccination compared to non vaccinated ibexes. The non vaccinated ibexes remained seronegative until challenge and showed neutralizing antibodies from 7 dpi. BTV RNA was detected in the blood of non vaccinated ibexes from 2 to the end of the study (28 dpi) and in target tissue samples obtained at necropsy (8 and 28 dpi). BTV-1 was successfully isolated on cell culture from blood and target tissues of non vaccinated ibexes. Clinical signs were unapparent and no gross lesions were found at necropsy. Our results show for the first time that Spanish ibex is susceptible and asymptomatic to BTV infection and also that a single dose of vaccine prevents viraemia against BTV-1 and BTV-8 replication.  相似文献   

2.
An immunoaffinity chromatography (IAC) method was optimized for the selective capture of bluetongue virus (BTV) from blood samples and isolation of the virus in cell culture. The antibody against BTV core particles (lacking the outer capsid proteins VP2 and VP5) was used for the optimization of IAC technique. The antibody against BTV core particle was conjugated with Protein A-virus complex and the complex was dissociated using elution buffer (4 M MgCl2 with 75 mM HEPES, pH 6.5). The optimized IAC method specifically purified the BTV without capturing other commonly infecting small ruminant’s viruses like gaotpox virus (GTPV), sheeppox virus (SPPV), Peste des petits ruminants virus (PPRV) and Foot and mouth disease virus (FMDV). The blood samples (n?=?22), positive for BTV antigen in sandwich-ELISA were attempted for virus isolation in the BHK-21 cell using the optimized IAC method. A total of seven BTV were isolated by selective capturing of the virion particles. The isolated viruses were characterized by RNA-PAGE, sequence analysis and serum neutralization test (SNT). Electropherotypic analysis of viral dsRNA in the RNA-PAGE revealed the presence of ten dsRNA segments characteristic of BTV. Out of seven isolates, four isolates were identified as BTV-1 and three isolates were identified as BTV-16 based on nucleotide sequences of segment-2. Phylogenetic analysis of segment-2 nucleotide sequence segregated BTV-1 and BTV-16 isolates to monophyletic cluster at close proximity to other eastern topotype. In SNT, hyperimmune serum (HIS) against BTV-1 neutralized the four BTV-1 isolates up to a titer?>?256 and HIS against BTV-16 neutralized the three BTV-16 isolates up to a titer?>?128. The IAC technique will be useful for the selective capture of BTV from mixed infection (BTV with other small ruminant’s viruses) and isolation from blood sample having low viral load by enrichment.  相似文献   

3.
Bluetongue virus (BTV) can infect most species of domestic and wild ruminants causing substantial morbidity and mortality and, consequently, high economic losses. In 2006, an epizootic of BTV serotype 8 (BTV-8) started in northern Europe that caused significant disease in cattle and sheep before comprehensive vaccination was introduced two years later. Here, we evaluate the potential of equine herpesvirus type 1 (EHV-1), an alphaherpesvirus, as a novel vectored DIVA (differentiating infected from vaccinated animals) vaccine expressing VP2 of BTV-8 alone or in combination with VP5. The EHV-1 recombinant viruses stably expressed the transgenes and grew with kinetics that were identical to those of parental virus in vitro. After immunization of mice, a BTV-8-specific neutralizing antibody response was elicited. In a challenge experiment using a lethal dose of BTV-8, 100% of interferon-receptor-deficient (IFNAR(-/-)) mice vaccinated with the recombinant EHV-1 carrying both VP2 and VP5, but not VP2 alone, survived. VP7 was not included in the vectored vaccines and was successfully used as a DIVA marker. In summary, we show that EHV-1 expressing BTV-8 VP2 and VP5 is capable of eliciting a protective immune response that is distinguishable from that after infection and as such may be an alternative for BTV vaccination strategies in which DIVA compatibility is of importance.  相似文献   

4.
Bluetongue virus (BTV) belongs to the genus Orbivirus within the family Reoviridae. The development of vector-based vaccines expressing conserved protective antigens results in increased immune activation and could reduce the number of multiserotype vaccinations required, therefore providing a cost-effective product. Recent recombinant DNA technology has allowed the development of novel strategies to develop marker and safe vaccines against BTV. We have now engineered naked DNAs and recombinant modified vaccinia virus Ankara (rMVA) expressing VP2, VP7 and NS1 proteins from BTV-4. IFNAR((-/-)) mice inoculated with DNA/rMVA-VP2,-VP7-NS1 in an heterologous prime boost vaccination strategy generated significant levels of antibodies specific of VP2, VP7, and NS1, including those with neutralizing activity against BTV-4. In addition, vaccination stimulated specific CD8(+) T cell responses against these three BTV proteins. Importantly, the vaccine combination expressing NS1, VP2 and VP7 proteins of BTV-4, elicited sterile protection against a lethal dose of homologous BTV-4 infection. Remarkably, the vaccine induced cross-protection against lethal doses of heterologous BTV-8 and BTV-1 suggesting that the DNA/rMVA-VP2,-VP7,-NS1 marker vaccine is a promising multiserotype vaccine against BTV.  相似文献   

5.

Background

Bluetongue virus (BTV) is an economically important, arthropod borne, emerging pathogen in Europe, causing disease mainly in sheep and cattle. Routine vaccination for bluetongue would require the ability to distinguish between vaccinated and infected individuals (DIVA). Current vaccines are effective but are not DIVA. Virus-like particles (VLPs) are highly immunogenic structural mimics of virus particles, that only contain a subset of the proteins present in a natural infection. VLPs therefore offer the potential for the development of DIVA compatible bluetongue vaccines.

Methodology/Principal Findings

Merino sheep were vaccinated with either monovalent BTV-1 VLPs or a bivalent mixture of BTV-1 VLPs and BTV-4 VLPs, and challenged with virulent BTV-1 or BTV-4. Animals were monitored for clinical signs, antibody responses, and viral RNA. 19/20 animals vaccinated with BTV-1 VLPs either alone or in combination with BTV-4 VLPs developed neutralizing antibodies to BTV-1, and group specific antibodies to BTV VP7. The one animal that showed no detectable neutralizing antibodies, or group specific antibodies, had detectable viral RNA following challenge but did not display any clinical signs on challenge with virulent BTV-1. In contrast, all control animals'' demonstrated classical clinical signs for bluetongue on challenge with the same virus. Six animals were vaccinated with bivalent vaccine and challenged with virulent BTV-4, two of these animals had detectable viral levels of viral RNA, and one of these showed clinical signs consistent with BTV infection and died.

Conclusions

There is good evidence that BTV-1 VLPs delivered as monovalent or bivalent immunogen protect from bluetongue disease on challenge with virulent BTV-1. However, it is possible that there is some interference in protective response for BTV-4 in the bivalent BTV-1 and BTV-4 VLP vaccine. This raises the question of whether all combinations of bivalent BTV vaccines are possible, or if immunodominance of particular serotypes could interfere with vaccine efficacy.  相似文献   

6.
【背景】蓝舌病病毒(Bluetongue Virus,BTV)是一种侵染反刍动物的虫媒病毒,基因重配可引起病毒的快速变异。【目的】通过我国强致病性BTV-16型毒株与弱致病性BTV-4型毒株间Seg-2与Seg-6基因节段的重配,探讨病毒基因重配与表型变异之间的关系。【方法】采用全长cDNA扩增与高通量测序获取BTV-16/V158的全基因组序列,构建病毒的真核表达质粒,通过免疫荧光与WesternBlot检测目的蛋白表达;通过RT-PCR、体外转录与细胞转染等方法建立BTV反向遗传体系并获取基因重配病毒;通过蚀斑分析、增殖曲线分析与血清中和试验,比较亲本毒株与基因重配病毒在生物学特性上的差异。【结果】获取的BTV-16/V158毒株基因组大小为19 186 bp,与中国和印度BTV-16型毒株具有最近的亲缘关系;将表达BTV VP1、VP3与NS2的真核表达质粒转染细胞,检测到目的蛋白的表达;将BTV的7种真核表达质粒与基因组ssRNA共转染BHK-21细胞,成功拯救出与亲本毒株生物学特性一致的病毒;将BTV-16/V158毒株的Seg-2与Seg-6替换为BTV-4/YTS4毒株的对应基因节段,拯救出基因重配病毒BTV-16/V158-RG (BTV-4/S2,S6);与亲本病毒相比较,基因重配病毒在BHK-21细胞上形成的蚀斑变小,增殖能力减弱,血清型由BTV-16型转化为BTV-4型。【结论】建立了我国流行BTV-16型毒株的反向遗传体系,BTVSeg-2与Seg-6的基因重配可引起病毒在细胞上增殖能力的改变与血清型改变。研究结果为BTV基因重配致病毒变异与新型基因工程疫苗的研究提供了基础。  相似文献   

7.
8.
Bluetongue virus (BTV), a member of genus Orbivirus, family Reoviridae, is non-enveloped with double shelled structure and 10 segmented double stranded RNA genome. The RNA segment L2 encodes an outer capsid serotype specific viral protein VP2. BTV serotype 1 (BTV-1) specific novel primer pair, forward primer (1240-1271 bp) and reverse primer (1844-1813 bp), was designed using VP2 gene sequences available in GenBank to amplify 1240-1844 bp region because two hypervariable and three conserved regions have been reported within these 604 nucleotides. This primer pair successfully amplified cell culture adapted six Indian isolates of BTV-1. The 604 bp PCR product of VP2 gene of BTV-1 Avikanagar (A), Chennai (C) and Sirsa 3 (S3) Indian isolates were cloned in pPCR-Script Amp SK (+) vector and transformed into XL10-Gold Kan ultracompetent Epicurian coli cells. The positive clones selected by blue-white screening and colony touch PCR were sequenced. BTV-1A, C and S3 isolates revealed 99% nucleotide sequence identity within 1304-1844 bp region of VP2 gene. The partial VP2 gene sequences (1240-1844 bp region) revealed that BTV-1 Indian isolates were 89% identical with Australian (AUS) BTV-1 isolates while the identity with South African (SA) BTV-1 isolate was 75%. Phylogenetically, three BTV-1 Indian isolates formed one group which is closely related to BTV-1AUS isolates followed by BTV-1SA, BTV-2, 9, 23, 13, 17, 10 and 11 isolates from different parts of world. Based on partial VP2 gene sequences, it is concluded that Indian isolates of BTV-1 are closely related to BTV-1AUS isolates than BTV-1SA and other serotypes.  相似文献   

9.
Bluetongue (BT) is an arbovirus transmitted disease by bites of the genus Culicoides and infects wild and domestic ruminants particularly in sheep. As an important outer shell protein which defines BTV serotypes, VP2 has been shown to be an ideal target antigen for identification of different BTV serotypes. In order to prepare a monoclonal antibody (mAb) against the VP2 protein of BTV-4, the corresponding encoding gene L2 was divided into three segments and then cloned into pET-28a (+) and pMAL-c5X vectors to generate recombinant plasmids, which were expressed in Escherichia coli BL21 (DE3) as histidine (His)-tagged (His-4A/4B/4C) and maltose-binding protein (MBP)-tagged (MBP-4A/4B/4C) fusion proteins. After affinity purification of His-4A/4B/4C with Ni-NTA agarose and MBP-4A/4B/4C with amylose resin, His-4A/4B/4C were used to immunize BALB/mice and MBP-4A/4B/4C were used to screen for mAb-secreting hybridomas. Five hybridoma cell lines stably secreting mAbs against different VP2 segments were obtained, in which 4A-1G7 and 4B-1B6 could recognize BTV-4 and also cross-react with other BTV serotypes. With the joint action of the two mAbs, BTV-4 and BTV-20 infection would be distinguished from other BTV serotypes. The successful preparation of recombinant VP2 segments and mAbs provides valuable materials that can be used in serological diagnosis of BTV-4.  相似文献   

10.
During the incursion of bluetongue virus (BTV) serotype 8 in France in 2007, an increase in the number of abortions in cattle was observed, but the cause was not clearly established. A survey of all the reported cases of abortion in cattle from November 2008 to April 2009 was conducted in the Nièvre district (Burgundy region) to determine the percentage of abortions as a result of BTV-8 and to study factors that could have played a role in BTV-8 transplacental transmission. BTV-8 was present in 16% of the fetuses or newborn calves that died within 48 h, from 780 dams. Dams inseminated before the BTV epizootic peak recorded from July to September 2008 were more likely to have BTV-positive abortions (OR=5.7, P<0.001) and those vaccinated in May or June 2008 were less likely to have BTV-positive abortions (OR=0.3, P=0.01 and OR=0.4, P=0.001, respectively). The gestational month was not a predictor of BTV abortion. In blood or spleen, fetuses/calves from RT-PCR-positive dams had significantly higher RNA concentrations than fetuses/calves from RT-PCR-negative dams. Of the 128 dams that had BTV-positive fetuses or calves, 60% were RT-PCR-negative. BTV-8-positive fetuses/calves were significantly more frequent (n=42 vs n=21, P=0.082) amongst those showing clinical signs or lesions suggestive of cerebral damage.  相似文献   

11.
Field-collected South African Culicoides species (Diptera, Ceratopogonidae) were fed on sheep blood containing bluetongue virus (BTV) represented by 13 low-passage reference serotypes: -1, -2, -4, -6, -7, -8, -9, -10, -11, -12, -13, -16 and -19. After 10 days of extrinsic incubation at 23.5 degrees C, of the 13 serotypes used, seven were recovered from C. (Avaritia) imicola Kieffer and 11 from C. (A.) bolitinos Meiswinkel. Virus recovery rates and the mean titres for most serotypes were significantly higher in C. bolitinos than in C. imicola. In addition, BTV was recovered from three non-Avaritia Culicoides species, namely C. (Remmia) enderleini Cornet & Brunhes (BTV-9), C. (Hoffmania) milnei Austen (BTV-4) and C. (H.) zuluensis de Meillon (BTV-16). No virus could be recovered from 316 individuals representing a further 14 Culicoides species. In Culicoides species fed on blood containing similar or identical virus titres of distinct BTV serotypes, significant differences were found in virus recovery rates. The results of this study confirm the higher vector competence of C. bolitinos compared with C. imicola.  相似文献   

12.
Bluetongue virus (BTV) is the causative agent of a major disease of livestock (bluetongue). For over two decades, it has been widely accepted that the 10 segments of the dsRNA genome of BTV encode for 7 structural and 3 non-structural proteins. The non-structural proteins (NS1, NS2, NS3/NS3a) play different key roles during the viral replication cycle. In this study we show that BTV expresses a fourth non-structural protein (that we designated NS4) encoded by an open reading frame in segment 9 overlapping the open reading frame encoding VP6. NS4 is 77-79 amino acid residues in length and highly conserved among several BTV serotypes/strains. NS4 was expressed early post-infection and localized in the nucleoli of BTV infected cells. By reverse genetics, we showed that NS4 is dispensable for BTV replication in vitro, both in mammalian and insect cells, and does not affect viral virulence in murine models of bluetongue infection. Interestingly, NS4 conferred a replication advantage to BTV-8, but not to BTV-1, in cells in an interferon (IFN)-induced antiviral state. However, the BTV-1 NS4 conferred a replication advantage both to a BTV-8 reassortant containing the entire segment 9 of BTV-1 and to a BTV-8 mutant with the NS4 identical to the homologous BTV-1 protein. Collectively, this study suggests that NS4 plays an important role in virus-host interaction and is one of the mechanisms played, at least by BTV-8, to counteract the antiviral response of the host. In addition, the distinct nucleolar localization of NS4, being expressed by a virus that replicates exclusively in the cytoplasm, offers new avenues to investigate the multiple roles played by the nucleolus in the biology of the cell.  相似文献   

13.
Coinfection of a cell by two different strains of a segmented virus can give rise to a “reassortant” with phenotypic characteristics that might differ from those of the parental strains. Bluetongue virus (BTV) is a double-stranded RNA (dsRNA) segmented virus and the cause of bluetongue, a major infectious disease of livestock. BTV exists as at least 26 different serotypes (BTV-1 to BTV-26). Prompted by the isolation of a field reassortant between BTV-1 and BTV-8, we systematically characterized the process of BTV reassortment. Using a reverse genetics approach, our study clearly indicates that any BTV-1 or BTV-8 genome segment can be rescued in the heterologous “backbone.” To assess phenotypic variation as a result of reassortment, we examined viral growth kinetics and plaque sizes in in vitro experiments and virulence in an experimental mouse model of bluetongue disease. The monoreassortants generated had phenotypes that were very similar to those of the parental wild-type strains both in vitro and in vivo. Using a forward genetics approach in cells coinfected with BTV-1 and BTV-8, we have shown that reassortants between BTV-1 and BTV-8 are generated very readily. After only four passages in cell culture, we could not detect wild-type BTV-1 or BTV-8 in any of 140 isolated viral plaques. In addition, most of the isolated reassortants contained heterologous VP2 and VP5 structural proteins, while only 17% had homologous VP2 and VP5 proteins. Our study has shown that reassortment in BTV is very flexible, and there is no fundamental barrier to the reassortment of any genome segment. Given the propensity of BTV to reassort, it is increasingly important to have an alternative classification system for orbiviruses.  相似文献   

14.
为监测云南边境地区虫媒库蠓蓝舌病病毒携带情况,本研究对2013年-2017年从云南6个口岸及周边地区采集到的约5 400只库蠓样本,分180组。采用荧光定量RT-PCR检测、鸡胚和细胞分离、目的基因克隆测序分析和间接免疫荧光试验等进行病毒分离与鉴定。结果显示:采集库蠓样本中有20组检出蓝舌病病毒核酸,检出率为11.11%(20/180);接种后有1份样本能导致鸡胚胚体充血出血和死亡以及BHK-21细胞呈现明显的细胞病变;RT-PCR能从感染细胞样本中扩增出蓝舌病病毒VP7基因特异性片段,且该片段序列与国外BTV-1毒株相应序列的相似性达95%~99%;间接免疫荧光试验显示分离病毒能与BTV-1抗体发生特异性结合。结果表明,云南边境地区库蠓携带有蓝舌病病毒,且为BTV-1,因此应加强对云南边境地区蓝舌病的预防与控制。  相似文献   

15.
Bluetongue virus (BTV) can infect most ruminant species and is usually transmitted by adult, vector-competent biting midges (Culicoides spp.). Infection with BTV can cause severe clinical signs and can be fatal, particularly in naïve sheep and some deer species. Although 24 distinct BTV serotypes were recognized for several decades, additional ‘types’ have recently been identified, including BTV-25 (from Switzerland), BTV-26 (from Kuwait) and BTV-27 from France (Corsica). Although BTV-25 has failed to grow in either insect or mammalian cell cultures, BTV-26 (isolate KUW2010/02), which can be transmitted horizontally between goats in the absence of vector insects, does not replicate in a Culicoides sonorensis cell line (KC cells) but can be propagated in mammalian cells (BSR cells). The BTV genome consists of ten segments of linear dsRNA. Mono-reassortant viruses were generated by reverse-genetics, each one containing a single BTV-26 genome segment in a BTV-1 genetic-background. However, attempts to recover a mono-reassortant containing genome-segment 2 (Seg-2) of BTV-26 (encoding VP2), were unsuccessful but a triple-reassortant was successfully generated containing Seg-2, Seg-6 and Seg-7 (encoding VP5 and VP7 respectively) of BTV-26. Reassortants were recovered and most replicated well in mammalian cells (BSR cells). However, mono-reassortants containing Seg-1 or Seg-3 of BTV-26 (encoding VP1, or VP3 respectively) and the triple reassortant failed to replicate, while a mono-reassortant containing Seg-7 of BTV-26 only replicated slowly in KC cells.  相似文献   

16.
17.
To determine if neutralizing epitopes of Bluetongue virus (BTV) 17 are host dependent, e.g., that monoclonal antibodies (mAb) to Bluetongue virus 17 (BTV 17) differ in their ability to neutralize BTV infectivity in insect versus mammalian cells, a panel of neutralizing mAb was developed. The relative neutralizing titer of eight mAb for BTV 17 infectivity in mammalian versus insect target cells was determined. Four mAb differed in their relative neutralization titer when assayed on mammalian target cells as compared to insect target cells. These findings suggest that different epitopes involved in neutralization might be important in virus infectivity and neutralization in mammalian versus insect target cells. To determine which viral protein(s) these mAb bind, the specificity of the mAb was determined by radioimmunoprecipitations. Five BTV 17 neutralizing mAb bound to the major outer coat protein P2, a 98-kDa protein, whereas the BTV protein(s) bound by the other three neutralizing mAb could not be determined. The potential role of the two BTV outer coat proteins in infection of mammalian and insect host cells is discussed.  相似文献   

18.
Bluetongue virus is the "type" species of the genus Orbivirus, family Reoviridae. Twenty four distinct bluetongue virus (BTV) serotypes have been recognized for decades, any of which is thought to be capable of causing "bluetongue" (BT), an insect-borne disease of ruminants. However, two further BTV serotypes, BTV-25 (Toggenburg orbivirus, from Switzerland) and BTV-26 (from Kuwait) have recently been identified in goats and sheep, respectively. The BTV genome is composed of ten segments of linear dsRNA, encoding 7 virus-structural proteins (VP1 to VP7) and four distinct non-structural (NS) proteins (NS1 to NS4). We report the entire BTV-26 genome sequence (isolate KUW2010/02) and comparisons to other orbiviruses. Highest identity levels were consistently detected with other BTV strains, identifying KUW2010/02 as BTV. The outer-core protein and major BTV serogroup-specific antigen "VP7" showed 98% aa sequence identity with BTV-25, indicating a common ancestry. However, higher level of variation in the nucleotide sequence of Seg-7 (81.2% identity) suggests strong conservation pressures on the protein of these two strains, and that they diverged a long time ago. Comparisons of Seg-2, encoding major outer-capsid component and cell-attachment protein "VP2" identified KUW2010/02 as 26th BTV, within a 12th Seg-2 nucleotype [nucleotype L]. Comparisons of Seg-6, encoding the smaller outer capsid protein VP5, also showed levels of nt/aa variation consistent with identification of KUW2010/02 as BTV-26 (within a 9th Seg-6 nucleotype - nucleotype I). Sequence data for Seg-2 of KUW2010/02 were used to design four sets of oligonucleotide primers for use in BTV-26, type-specific RT-PCR assays. Analyses of other more conserved genome segments placed KUW2010/02 and BTV-25/SWI2008/01 closer to each other than to other "eastern" or "western" BTV strains, but as representatives of two novel and distinct geographic groups (topotypes). Our analyses indicate that all of the BTV genome segments have evolved under strong purifying selection.  相似文献   

19.
The entire genome of the reference strain of bluetongue virus (BTV) serotype 16 (strain RSArrrr/16) was sequenced (a total of 23,518 base pairs). The virus was obtained from the Orbivirus Reference Collection (ORC) at IAH, Pirbright, United Kingdom. The virus strain, which was previously provided by the Onderstepoort Veterinary Research Institute in South Africa, was originally isolated from the Indian subcontinent (Hazara, West Pakistan) in 1960. Previous phylogenetic comparisons show that BTV RNA sequences cluster according to the geographic origins of the virus isolate/lineage, identifying distinct BTV topotypes. Sequence comparisons of segments Seg-1 to Seg-10 show that RSArrrr/16 belongs to the major eastern topotype of BTV (BTV-16e) and can be regarded as a reference strain of BTV-16e for phylogenetic and molecular epidemiology studies. All 10 genome segments of RSArrrr/16 group closely with the vaccine strain of BTV-16 (RSAvvvv/16) that was derived from it, as well as those recently published for a Chinese isolate of BTV-16 (>99% nucleotide identity), suggesting a very recent common ancestry for all three viruses.  相似文献   

20.
Since 1998, 9 of the 26 serotypes of bluetongue virus (BTV) have spread throughout Europe, and serotype 8 has suddenly emerged in northern Europe, causing considerable economic losses, direct (mortality and morbidity) but also indirect, due to restriction in animal movements. Therefore, many new types of vaccines, particularly subunit vaccines, with improved safety and efficacy for a broad range of BTV serotypes are currently being developed by different laboratories. Here we exploited a reverse genetics-based replication-deficient BTV serotype 1 (BTV-1) (disabled infectious single cycle [DISC]) strain to generate a series of DISC vaccine strains. Cattle and sheep were vaccinated with these viruses either singly or in cocktail form as a multivalent vaccine candidate. All vaccinated animals were seroconverted and developed neutralizing antibody responses to their respective serotypes. After challenge with the virulent strains at 21 days postvaccination, vaccinated animals showed neither any clinical reaction nor viremia. Further, there was no interference with protection with a multivalent preparation of six distinct DISC viruses. These data indicate that a very-rapid-response vaccine could be developed based on which serotypes are circulating in the population at the time of an outbreak.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号