首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RACK1 attenuates RLR antiviral signaling by targeting VISA-TRAF complexes   总被引:1,自引:0,他引:1  
Virus-induced signaling adaptor (VISA), which mediates the production of type I interferon, is crucial for the retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) signaling pathway. Upon viral infection, RIG-I recognizes double-stranded viral RNA and interacts with VISA to mediate antiviral innate immunity. However, the mechanisms underlying RIG/VISA-mediated antiviral regulation remain unclear. In this study, we confirmed that receptor for activated C kinase 1 (RACK1) interacts with VISA and attenuates the RIG/VISA-mediated antiviral innate immune signaling pathway. Overexpression of RACK1 inhibited the interferon-β (IFN-β) promoter; interferon-stimulated response element (ISRE); nuclear factor kappa B (NF-κB) activation; and dimerization of interferon regulatory factor 3 (IRF3) mediated by RIG-I, VISA, and TANK-binding kinase 1 (TBK1). A reduction in RACK1 expression level upon small interfering RNA knockdown increased RIG/VISA-mediated antiviral transduction. Additionally, RACK1 disrupted formation of the VISA-tumor necrosis factor receptor-associated factor 2 (TRAF2), VISA-TRAF3, and VISA-TRAF6 complexes during RIG-I/VISA-mediated signal transduction. Additionally, RACK1 enhanced K48-linked ubiquitination of VISA, attenuated its K63-linked ubiquitination, and decreased VISA-mediated antiviral signal transduction. Together, these results indicate that RACK1 interacts with VISA to repress downstream signaling and downregulates virus-induced IFN-β production in the RIG-I/VISA signaling pathway.  相似文献   

2.
3.
Feng H  Liu H  Kong R  Wang L  Wang Y  Hu W  Guo Q 《Fish & shellfish immunology》2011,30(4-5):1159-1169
The cytoplasmic helicase protein RIG-I (retinoic acid-inducible gene I) and downstream signaling molecules, MAVS (mitochondrial antiviral signaling protein), TRAF3 (TNF-receptor-associated factor 3) and TBK1 (TANK-binding kinase 1), have significant roles in the recognition of cytoplasmic 5'-triphosphate ssRNA and short dsRNA, and phosphorylation of IRF-3 (interferon regulatory factor 3) and IRF-7 which is responsible for the induction of type I interferons (IFN). In the present study, the full-length cDNAs of RIG-I, MAVS, TRAF3 and TBK1 were cloned and identified in common carp (Cyprinus carpio L.). The deduced protein of carp RIG-I is of 946 aa (amino acids), consisting of two CARDs (caspase-recruitment domain), a DEXDc (DExD/H box-containing domain), a HELICc (helicase superfamily c-terminal domain) and a RD (regulatory domain). Carp MAVS is of 585 aa, containing a CARD, a proline-rich region and a TM (transmembrane domain). Carp TRAF3 encodes a protein of 573 aa, including a RING (really interesting new gene), two TRAF-type zinc fingers, a coiled coil and a MATH-TRAF3 (meprin and TRAF homology) domain. Carp TBK1 is of 727 aa and contains a S_TKc domain (Serine/Threonine protein kinases, catalytic domain). Carp RIG-I, MAVS, TRAF3 and TBK1 mRNAs are ubiquitously expressed in all tissues examined. In response to SVCV infection, carp RIG-I and MAVS mRNAs were up-regulated at different levels in spleen, head kidney and intestine tissues at different time points. Similarly, both carp IRF-3 and IRF-7 mRNAs were significantly up-regulated in the detected tissues. Especially in intestine, the IRF-3 and IRF-7 mRNAs of carp increased and reached 25.3-fold (at 3 dpi) and 224.7-fold (at 5 dpi). Noteworthily, a significant growth of carp TRAF3 and TBK1 mRNA was also mainly found in intestine (7.0-fold and 11.3-fold at 5 dpi, respectively). These data implied that the expression profiles of IRF-3/-7 mRNAs in carp correlate with the up-regulation of RIG-I/MAVS/TRAF3/TBK, and carp RIG-I and MAVS may be involved in antiviral responses through the RIG-I viral recognition signaling pathway in a TRAF3/TBK1-dependent manner.  相似文献   

4.
5.
6.
7.
Induction of type I interferons can be triggered by viral components through Toll-like receptors or intracellular viral receptors such as retinoic acid-inducible gene I. Here, we demonstrate that the TRAF (tumor necrosis factor receptor-associated factor) family member-associated NF-kappaB activator (TANK) plays an important role in interferon induction through both retinoic acid-inducible gene I- and Toll-like receptor-dependent pathways. TANK forms complexes with both upstream signal mediators, such as Cardif/MAVS/IPS-1/VISA, TRIF (Toll-interleukin-1 receptor domain-containing adaptor inducing interferon-beta), and TRAF3 and downstream mediators TANK-binding kinase 1, inducible IkappaB kinase, and interferon regulatory factor 3. In addition, it synergizes with these signaling components in interferon induction. Specific knockdown of TANK results in reduced type I interferon production, increased viral titers, and enhanced cell sensitivity to viral infection. Thus, TANK may be a critical adaptor that regulates the assembly of the TANK-binding kinase 1-inducible IkappaB kinase complex with upstream signaling molecules in multiple antiviral pathways.  相似文献   

8.
Toll‐like receptor‐3 (TLR3) and RNA helicase retinoic‐acid‐inducible protein‐1 (RIG‐I) serve as cytoplasmic sensors for viral RNA components. In this study, we investigated how the TLR3 and RIG‐I signalling pathway was stimulated by viral infection to produce interleukin (IL)‐32‐mediated pro‐inflammatory cytokines and type I interferon in the corneal epithelium using Epstein–Barr virus (EBV)‐infected human cornea epithelial cells (HCECs/EBV) as a model of viral keratitis. Increased TLR3 and RIG‐I that are responded to EBV‐encoded RNA 1 and 2 (EBER1 and EBER2) induced the secretion of IL‐32‐mediated pro‐inflammatory cytokines and IFN‐β through up‐regulation of TRIF/TRAF family proteins or RIP‐1. TRIF silencing or TLR3 inhibitors more efficiently inhibited sequential phosphorylation of TAK1, TBK1, NF‐κB and IRFs to produce pro‐inflammatory cytokines and IFN‐β than RIG‐I‐siRNA transfection in HCECs/EBV. Blockade of RIP‐1, which connects the TLR3 and RIG‐I pathways, significantly blocked the TLR3/TRIF‐mediated and RIG‐I‐mediated pro‐inflammatory cytokines and IFN‐β production in HCECs/EBV. These findings demonstrate that TLR3/TRIF‐dependent signalling pathway against viral RNA might be a main target to control inflammation and anti‐viral responses in the ocular surface.  相似文献   

9.
10.
Viral infection leads to induction of pattern-recognition receptor signaling, which leads to interferon regulatory factor (IRF) activation and ultimately interferon (IFN) production. To establish infection, many viruses have strategies to evade the innate immunity. For the hepatitis B virus (HBV), which causes chronic infection in the liver, the evasion strategy remains uncertain. We now show that HBV polymerase (Pol) blocks IRF signaling, indicating that HBV Pol is the viral molecule that effectively counteracts host innate immune response. In particular, HBV Pol inhibits TANK-binding kinase 1 (TBK1)/IκB kinase-ε (IKKε), the effector kinases of IRF signaling. Intriguingly, HBV Pol inhibits TBK1/IKKε activity by disrupting the interaction between IKKε and DDX3 DEAD box RNA helicase, which was recently shown to augment TBK1/IKKε activity. This unexpected role of HBV Pol may explain how HBV evades innate immune response in the early phase of the infection. A therapeutic implication of this work is that a strategy to interfere with the HBV Pol-DDX3 interaction might lead to the resolution of life-long persistent infection.  相似文献   

11.
干扰素调节因子-3(interferon regulatory factor-3,IRF-3)是IRF家族中重要 转录因子之一,在调控干扰素(interferon, IFN)基因表达和抗病毒天然免疫反应中具有重要作 用. 最新发现的MITA (mediator of IRF-3 activation, 又称STING/ERIS)蛋白是宿主抗病 毒天然免疫反应中的一种重要调节分子. 病毒侵染时,MITA与IRF-3相互作用,特异性激活 IRF-3,并募集TANK结合激酶1(TANK binding kinase 1, TBK1)与IFN通路中的线粒体抗 病毒信号蛋白MAVS(mitochondrial anti-viral signaling protein)形成复合物,且MITA可 被TBK1磷酸化,诱导Ⅰ型IFN及IFN刺激基因(interferon stimulate genes, ISG)的表达 ,诱发抗病毒天然免疫反应. 同时还发现,泛素连接酶RNF5(ring finger protein 5)可对MITA 发生泛素化修饰从而抑制其对IRF-3活化,实现对宿主抗病毒天然免疫反应负调节作用. 本 室研究发现,严重性急性呼吸系统综合症冠状病毒(severe acute respiratory syndrome co ronavirus, SARS-CoV)和人类新型冠状病毒(human coronavirus NL63, HCoV-NL63)的 木瓜样蛋白酶(papain-like protease, PLP)利用其特有的去泛素化酶(deubiquitinase, DUB)活性,通过宿主细胞泛素-蛋白酶体信号系统对IRF-3的泛素化等翻译后修饰进行调节 ,从而成为该种病毒逃逸机体抗病毒防御系统主要手段之一.  相似文献   

12.
MAVS signalosome plays an important role in RIG‐I‐like receptor (RLR)‐induced antiviral signaling. Upon the recognition of viral RNAs, RLRs activate MAVS, which further recruits TRAF6 and other signaling proteins to initiate type I interferon (IFN) activation. MAVS signalosome also regulates virus‐induced apoptosis to limit viral replication. However, the mechanisms that control the activity of MAVS signalosome are still poorly defined. Here, we report NLRP11, a Nod‐like receptor, is induced by type I IFN and translocates to mitochondria to interact with MAVS upon viral infection. Using MAVS as a platform, NLRP11 degrades TRAF6 to attenuate the production of type I IFNs as well as virus‐induced apoptosis. Our findings reveal the regulatory role of NLRP11 in antiviral immunity by disrupting MAVS signalosome.  相似文献   

13.
14.
15.
16.
17.
18.
TANK-binding kinase 1 (TBK1) is an important enzyme in the regulation of cellular antiviral effects. TBK1 regulates the activity of the interferon regulatory factors IRF3 and IRF7, thereby playing a key role in type I interferon (IFN) signaling pathways. The structure of TBK1 consists of an N-terminal kinase domain, a middle ubiquitin-like domain (ULD), and a C-terminal elongated helical domain. It has been reported that the ULD of TBK1 regulates kinase activity, playing an important role in signaling and mediating interactions with other molecules in the IFN pathway. In this study, we present the crystal structure of the ULD of human TBK1 and identify several conserved residues by multiple sequence alignment. We found that a hydrophobic patch in TBK1, containing residues Leu316, Ile353, and Val382, corresponding to the “Ile44 hydrophobic patch” observed in ubiquitin, was conserved in TBK1, IκB kinase epsilon (IKK?/IKKi), IκB kinase alpha (IKKα), and IκB kinase beta (IKKβ). In comparison with the structure of the IKKβ ULD domain of Xenopus laevis, we speculate that the Ile44 hydrophobic patch of TBK1 is present in an intramolecular binding surface between ULD and the C-terminal elongated helices. The varying surface charge distributions in the ULD domains of IKK and IKK-related kinases may be relevant to their specificity for specific partners.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号