首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
4.
The primary role of the innate immune response is to limit the spread of infectious pathogens, with activation of Toll-like receptor (TLR) and RIG-like receptor (RLR) pathways resulting in a pro-inflammatory response required to combat infection. Limiting the activation of these signaling pathways is likewise essential to prevent tissue injury in the host. Triad3A is an E3 ubiquitin ligase that interacts with several components of TLR signaling and modulates TLR activity. In the present study, we demonstrate that Triad3A negatively regulates the RIG-I RNA sensing pathway through Lys48-linked, ubiquitin-mediated degradation of the tumor necrosis factor receptor-associated factor 3 (TRAF3) adapter. Triad3A was induced following dsRNA exposure or virus infection and decreased TRAF3 levels in a dose-dependent manner; moreover, Triad3A expression blocked IRF-3 activation by Ser-396 phosphorylation and inhibited the expression of type 1 interferon and antiviral genes. Lys48-linked ubiquitination of TRAF3 by Triad3A increased TRAF3 turnover, whereas reduction of Triad3A expression by stable shRNA expression correlated with an increase in TRAF3 protein expression and enhancement of the antiviral response following VSV or Sendai virus infection. Triad3A and TRAF3 physically interacted together, and TRAF3 residues Y440 and Q442—previously shown to be important for association with the MAVS adapter—were also critical for Triad3A. Point mutation of the TRAF-Interacting-Motif (TIM) of Triad3A abrogated its ability to interact with TRAF3 and modulate RIG-I signaling. TRAF3 appears to undergo sequential ubiquitin “immuno-editing” following virus infection that is crucial for regulation of RIG-I-dependent signaling to the antiviral response. Thus, Triad3A represents a versatile E3 ubiquitin ligase that negatively regulates RIG-like receptor signaling by targeting TRAF3 for degradation following RNA virus infection.  相似文献   

5.
Intracellular RNA virus infection is detected by the cytoplasmic RNA helicase RIG-I that plays an essential role in signaling to the host antiviral response. Recently, the adapter molecule that links RIG-I sensing of incoming viral RNA to downstream signaling and gene activation events was characterized by four different groups; MAVS/IPS-1-1/VISA/Cardif contains an amino-terminal CARD domain and a carboxyl-terminal mitochondrial transmembrane sequence that localizes to the mitochondrial membrane. Furthermore, the hepatitis C virus NS3-4A protease complex specifically targets MAVS/IPS-1/VISA/Cardif for cleavage as part of its immune evasion strategy. With a novel search program written in python, we also identified an uncharacterized protein, KIAA1271 (K1271), containing a single CARD-like domain at the N terminus and a Leu-Val-rich C terminus that is identical to that of MAVS/IPS-1/VISA/Cardif. Using a combination of biochemical analysis, subcellular fractionation, and confocal microscopy, we now demonstrate that NS3-4A cleavage of MAVS/IPS-1/VISA/Cardif/K1271 results in its dissociation from the mitochondrial membrane and disrupts signaling to the antiviral immune response. Furthermore, virus-induced IKKepsilon kinase, but not TBK1, colocalized strongly with MAVS at the mitochondrial membrane, and the localization of both molecules was disrupted by NS3-4A expression. Mutation of the critical cysteine 508 to alanine was sufficient to maintain mitochondrial localization of MAVS/IPS-1/VISA/Cardif and IKKepsilon in the presence of NS3-4A. These observations provide an outline of the mechanism by which hepatitis C virus evades the interferon antiviral response.  相似文献   

6.
干扰素调节因子-3(interferon regulatory factor-3,IRF-3)是IRF家族中重要 转录因子之一,在调控干扰素(interferon, IFN)基因表达和抗病毒天然免疫反应中具有重要作 用. 最新发现的MITA (mediator of IRF-3 activation, 又称STING/ERIS)蛋白是宿主抗病 毒天然免疫反应中的一种重要调节分子. 病毒侵染时,MITA与IRF-3相互作用,特异性激活 IRF-3,并募集TANK结合激酶1(TANK binding kinase 1, TBK1)与IFN通路中的线粒体抗 病毒信号蛋白MAVS(mitochondrial anti-viral signaling protein)形成复合物,且MITA可 被TBK1磷酸化,诱导Ⅰ型IFN及IFN刺激基因(interferon stimulate genes, ISG)的表达 ,诱发抗病毒天然免疫反应. 同时还发现,泛素连接酶RNF5(ring finger protein 5)可对MITA 发生泛素化修饰从而抑制其对IRF-3活化,实现对宿主抗病毒天然免疫反应负调节作用. 本 室研究发现,严重性急性呼吸系统综合症冠状病毒(severe acute respiratory syndrome co ronavirus, SARS-CoV)和人类新型冠状病毒(human coronavirus NL63, HCoV-NL63)的 木瓜样蛋白酶(papain-like protease, PLP)利用其特有的去泛素化酶(deubiquitinase, DUB)活性,通过宿主细胞泛素-蛋白酶体信号系统对IRF-3的泛素化等翻译后修饰进行调节 ,从而成为该种病毒逃逸机体抗病毒防御系统主要手段之一.  相似文献   

7.
Rotavirus is a dsRNA virus that infects epithelial cells that line the surface of the small intestine. It causes severe diarrheal illness in children and ~500,000 deaths per year worldwide. We studied the mechanisms by which intestinal epithelial cells (IECs) sense rotavirus infection and signal IFN-β production, and investigated the importance of IFN-β production by IECs for controlling rotavirus production by intestinal epithelium and virus excretion in the feces. In contrast with most RNA viruses, which interact with either retinoic acid-inducible gene I (RIG-I) or melanoma differentiation-associated gene 5 (MDA5) inside cells, rotavirus was sensed by both RIG-I and MDA5, alone and in combination. Rotavirus did not signal IFN-β through either of the dsRNA sensors TLR3 or dsRNA-activated protein kinase (PKR). Silencing RIG-I or MDA5, or their common adaptor protein mitochondrial antiviral signaling protein (MAVS), significantly decreased IFN-β production and increased rotavirus titers in infected IECs. Overexpression of laboratory of genetics and physiology 2, a RIG-I-like receptor that interacts with viral RNA but lacks the caspase activation and recruitment domains required for signaling through MAVS, significantly decreased IFN-β production and increased rotavirus titers in infected IECs. Rotavirus-infected mice lacking MAVS, but not those lacking TLR3, TRIF, or PKR, produced significantly less IFN-β and increased amounts of virus in the intestinal epithelium, and shed increased quantities of virus in the feces. We conclude that RIG-I or MDA5 signaling through MAVS is required for the activation of IFN-β production by rotavirus-infected IECs and has a functionally important role in determining the magnitude of rotavirus replication in the intestinal epithelium.  相似文献   

8.
9.

Background  

The DExD/H domain containing RNA helicases such as retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5) are key cytosolic pattern recognition receptors (PRRs) for detecting nucleotide pathogen associated molecular patterns (PAMPs) of invading viruses. The RIG-I and MDA5 proteins differentially recognise conserved PAMPs in double stranded or single stranded viral RNA molecules, leading to activation of the interferon system in vertebrates. They share three core protein domains including a RNA helicase domain near the C terminus (HELICc), one or more caspase activation and recruitment domains (CARDs) and an ATP dependent DExD/H domain. The RIG-I/MDA5 directed interferon response is negatively regulated by laboratory of genetics and physiology 2 (LGP2) and is believed to be controlled by the mitochondria antiviral signalling protein (MAVS), a CARD containing protein associated with mitochondria.  相似文献   

10.
Retinoic acid-inducible gene I (RIG-I) is an important pattern recognition receptor that detects viral RNA and triggers the production of type-I interferons through the downstream adaptor MAVS (also called IPS-1, CARDIF, or VISA). A series of structural studies have elaborated some of the mechanisms of dsRNA recognition and activation of RIG-I. Recent studies have proposed that K63-linked ubiquitination of, or unanchored K63-linked polyubiquitin binding to RIG-I positively regulates MAVS-mediated antiviral signaling. Conversely phosphorylation of RIG-I appears to play an inhibitory role in controlling RIG-I antiviral signal transduction. Here we performed a combined structural and biochemical study to further define the regulatory features of RIG-I signaling. ATP and dsRNA binding triggered dimerization of RIG-I with conformational rearrangements of the tandem CARD domains. Full length RIG-I appeared to form a complex with dsRNA in a 2:2 molar ratio. Compared with the previously reported crystal structures of RIG-I in inactive state, our electron microscopic structure of full length RIG-I in complex with blunt-ended dsRNA, for the first time, revealed an exposed active conformation of the CARD domains. Moreover, we found that purified recombinant RIG-I proteins could bind to the CARD domain of MAVS independently of dsRNA, while S8E and T170E phosphorylation-mimicking mutants of RIG-I were defective in binding E3 ligase TRIM25, unanchored K63-linked polyubiquitin, and MAVS regardless of dsRNA. These findings suggested that phosphorylation of RIG inhibited downstream signaling by impairing RIG-I binding with polyubiquitin and its interaction with MAVS.  相似文献   

11.
The mitochondrial antiviral signaling (MAVS) protein on the mitochondrial outer membrane acts as a central signaling molecule in the RIG-I-like receptor (RLR) signaling pathway by linking upstream viral RNA recognition to downstream signal activation. We previously reported that mitochondrial E3 ubiquitin ligase, MARCH5, degrades the MAVS protein aggregate and prevents persistent downstream signaling. Since the activated RIG-I oligomer interacts and nucleates the MAVS aggregate, MARCH5 might also target this oligomer. Here, we report that MARCH5 targets and degrades RIG-I, but not its inactive phosphomimetic form (RIG-IS8E). The MARCH5-mediated reduction of RIG-I is restored in the presence of MG132, a proteasome inhibitor. Upon poly(I:C) stimulation, RIG-I forms an oligomer and co-expression of MARCH5 reduces the expression of this oligomer. The RING domain of MARCH5 is necessary for binding to the CARD domain of RIG-I. In an in vivo ubiquitination assay, MARCH5 transfers the Lys 48-linked polyubiquitin to Lys 193 and 203 residues of RIG-I. Thus, dual targeting of active RIG-I and MAVS protein oligomers by MARCH5 is an efficient way to switch-off RLR signaling. We propose that modulation of MARCH5 activity might be beneficial for the treatment of chronic immune diseases.  相似文献   

12.
Tumor Necrosis Factor receptor-associated factor-3 (TRAF3) is a central mediator important for inducing type I interferon (IFN) production in response to intracellular double-stranded RNA (dsRNA). Here, we report the identification of Sec16A and p115, two proteins of the ER-to-Golgi vesicular transport system, as novel components of the TRAF3 interactome network. Notably, in non-infected cells, TRAF3 was found associated with markers of the ER-Exit-Sites (ERES), ER-to-Golgi intermediate compartment (ERGIC) and the cis-Golgi apparatus. Upon dsRNA and dsDNA sensing however, the Golgi apparatus fragmented into cytoplasmic punctated structures containing TRAF3 allowing its colocalization and interaction with Mitochondrial AntiViral Signaling (MAVS), the essential mitochondria-bound RIG-I-like Helicase (RLH) adaptor. In contrast, retention of TRAF3 at the ER-to-Golgi vesicular transport system blunted the ability of TRAF3 to interact with MAVS upon viral infection and consequently decreased type I IFN response. Moreover, depletion of Sec16A and p115 led to a drastic disorganization of the Golgi paralleled by the relocalization of TRAF3, which under these conditions was unable to associate with MAVS. Consequently, upon dsRNA and dsDNA sensing, ablation of Sec16A and p115 was found to inhibit IRF3 activation and anti-viral gene expression. Reciprocally, mild overexpression of Sec16A or p115 in Hec1B cells increased the activation of IFNβ, ISG56 and NF-κB -dependent promoters following viral infection and ectopic expression of MAVS and Tank-binding kinase-1 (TBK1). In line with these results, TRAF3 was found enriched in immunocomplexes composed of p115, Sec16A and TBK1 upon infection. Hence, we propose a model where dsDNA and dsRNA sensing induces the formation of membrane-bound compartments originating from the Golgi, which mediate the dynamic association of TRAF3 with MAVS leading to an optimal induction of innate immune responses.  相似文献   

13.
Influenza A virus (IAV) triggers a contagious respiratory disease that produces considerable lethality. Although this lethality is likely due to an excessive host inflammatory response, the negative feedback mechanisms aimed at regulating such a response are unknown. In this study, we investigated the role of the eight "suppressor of cytokine signaling" (SOCS) regulatory proteins in IAV-triggered cytokine expression in human respiratory epithelial cells. SOCS1 to SOCS7, but not cytokine-inducible Src homology 2-containing protein (CIS), are constitutively expressed in these cells and only SOCS1 and SOCS3 expressions are up-regulated upon IAV challenge. Using distinct approaches affecting the expression and/or the function of the IFNalphabeta receptor (IFNAR)1, the viral sensors TLR3 and retinoic acid-inducible gene I (RIG-I) as well as the mitochondrial antiviral signaling protein (MAVS, a RIG-I signaling intermediate), we demonstrated that SOCS1 and SOCS3 up-regulation requires a TLR3-independent, RIG-I/MAVS/IFNAR1-dependent pathway. Importantly, by using vectors overexpressing SOCS1 and SOCS3 we revealed that while both molecules inhibit antiviral responses, they differentially modulate inflammatory signaling pathways.  相似文献   

14.
15.
16.

Background  

IPS-1/MAVS/VISA/Cardif is an adaptor protein that plays a crucial role in the induction of interferons in response to viral infection. In the initial stage of the intracellular antiviral response two RNA helicases, retinoic acid inducible gene-I (RIG-I) and melanoma differentiation-association gene 5 (MDA5), are independently able to bind viral RNA in the cytoplasm. The 62 kDa protein IPS-1/MAVS/VISA/Cardif contains an N-terminal caspase activation and recruitment (CARD) domain that associates with the CARD regions of RIG-I and MDA5, ultimately leading to the induction of type I interferons. As a first step towards understanding the molecular basis of this important adaptor protein we have undertaken structural studies of the IPS-1 MAVS/VISA/Cardif CARD region.  相似文献   

17.
18.
The RIG-I/Mda5 sensors recognize viral intracellular RNA and trigger host antiviral responses. RIG-I signals through the adaptor protein MAVS, which engages various TRAF family members and results in type I interferon (IFNs) and proinflammatory cytokine production via activation of IRFs and NF-κB, respectively. Both the IRF and NF-κB pathways also require the adaptor protein NEMO. We determined that the RIG-I pathway is differentially regulated by the linear ubiquitin assembly complex (LUBAC), which consists of the E3 ligases HOIL-1L, HOIP, and the accessory protein SHARPIN. LUBAC downregulated virus-mediated IFN induction by targeting NEMO for linear ubiquitination. Linear ubiquitinated NEMO associated with TRAF3 and disrupted the MAVS-TRAF3 complex, which inhibited IFN activation while stimulating NF-κB-dependent signaling. In SHARPIN-deficient MEFs, vesicular stomatitis virus replication was decreased due to increased IFN production. Linear ubiquitination thus switches NEMO from a positive to a negative regulator of RIG-I signaling, resulting in an attenuated IFN response.  相似文献   

19.
C Wen  Z Yan  X Yang  K Guan  C Xu  T Song  Z Zheng  W Wang  Y Wang  M Zhao  Y Zhang  T Xu  J Dou  J Liu  Q Xu  X He  C Wei  H Zhong 《PloS one》2012,7(7):e41687

Background

Innate immunity to viruses involves receptors such as RIG-I, which senses viral RNA and triggers an IFN-β signaling pathway involving the outer mitochondrial membrane protein MAVS. However, the functional status of MAVS phosphorylation remains elusive.

Methodology/Principal Findings

Here we demonstrate for the first time that MAVS undergoes extensive tyrosine phosphorylation upon viral infection, indicating that MAVS phosphorylation might play an important role in MAVS function. A tyrosine-scanning mutational analysis revealed that MAVS tyrosine-9 (Y9) is a phosphorylation site that is required for IFN-β signaling. Indeed, MAVS Y9F mutation severely impaired TRAF3/TRAF6 recruitment and displayed decreased tyrosine phosphorylation in response to VSV infection compared to wild type MAVS. Functionally, MAVS Y9 phosphorylation contributed to MAVS antiviral function without interfering with its apoptosis property.

Conclusions/Significance

These experiments identify a novel residue of MAVS that is crucially involved in the recruitment of TRAF3/TRAF6 and in downstream propagation of MAVS signaling.  相似文献   

20.
Influenza A virus (IAV) triggers a contagious and potentially lethal respiratory disease. A protective IL-1β response is mediated by innate receptors in macrophages and lung epithelial cells. NLRP3 is crucial in macrophages; however, which sensors elicit IL-1β secretion in lung epithelial cells remains undetermined. Here, we describe for the first time the relative roles of the host innate receptors RIG-I (DDX58), TLR3, and NLRP3 in the IL-1β response to IAV in primary lung epithelial cells. To activate IL-1β secretion, these cells employ partially redundant recognition mechanisms that differ from those described in macrophages. RIG-I had the strongest effect through a MAVS/TRIM25/Riplet–dependent type I IFN signaling pathway upstream of TLR3 and NLRP3. Notably, RIG-I also activated the inflammasome through interaction with caspase 1 and ASC in primary lung epithelial cells. Thus, NS1, an influenza virulence factor that inhibits the RIG-I/type I IFN pathway, strongly modulated the IL-1β response in lung epithelial cells and in ferrets. The NS1 protein derived from a highly pathogenic strain resulted in increased interaction with RIG-I and inhibited type I IFN and IL-1β responses compared to the least pathogenic virus strains. These findings demonstrate that in IAV-infected lung epithelial cells RIG-I activates the inflammasome both directly and through a type I IFN positive feedback loop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号