首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Previously, we compared the efficiency of direct injection with an adenovirus (Ad) expressing human gp100 (hgp100) to immunization with dendritic cells (DC) loaded with the same vector ex vivo. The DC vaccine provided the greatest protection against challenge with B16F10 melanoma, and antitumor immunity was found to be CD8(+) T cell-independent. In the current study, we sought to determine whether lack of CD8(+) T cell-mediated antitumor immunity was a function of the vaccine platform or the tumor line. Both Ad and DC/Ad vaccines elicited CD8(+) CTL reactive against hgp100 and provided protection against B16F10 engineered to express hgp100 demonstrating that both vaccination platforms can effectively generate protective CD8(+) T cell-mediated immunity. The hgp100-induced CTL cross-reacted with murine gp100 (mgp100) and lysed B16F10 cells pulsed with mgp100 peptide indicating that the resistance of B16F10 cells to CTL elicited by hgp100 vaccination may be due to a defect in processing of the endogenous mgp100. Indeed, introduction of the TAP-1 cDNA into B16F10 rendered the cells sensitive to lysis by gp100-specific CTL. Furthermore, gp100-immunized mice were protected from challenge with B16F10-TAP1 cells through a mechanism dependent upon CD8(+) T cells. These results demonstrate that tumor phenotype, not the vaccination platform, ultimately determines CD8(+) or CD4(+) T cell-mediated tumor clearance.  相似文献   

2.
Dendritic cells (DCs) are professional Ag-presenting cells that are being considered as potential immunotherapeutic agents to promote host immune responses against tumor Ags. In this study, recombinant adenovirus (Ad) vectors encoding melanoma-associated Ags were used to transduce murine DCs, which were then tested for their ability to activate CTL and induce protective immunity against B16 melanoma tumor cells. Immunization of C57BL/6 mice with DCs transduced with Ad vector encoding the hugp100 melanoma Ag (Ad2/hugp100) elicited the development of gp100-specific CTLs capable of lysing syngeneic fibroblasts transduced with Ad2/hugp100, as well as B16 cells expressing endogenous murine gp100. The induction of gp100-specific CTLs was associated with long term protection against lethal s.c. challenge with B16 cells. It was also possible to induce effective immunity against a murine melanoma self Ag, tyrosinase-related protein-2, using DCs transduced with Ad vector encoding the Ag. The level of antitumor protection achieved was dependent on the dose of DCs and required CD4+ T cell activity. Importantly, immunization with Ad vector-transduced DCs was not impaired in mice that had been preimmunized against Ad to mimic the immune status of the general human population. Finally, DC-based immunization also afforded partial protection against established B16 tumor cells, and the inhibition of tumor growth was improved by simultaneous immunization against two melanoma-associated Ags as opposed to either one alone. Taken together, these results support the concept of cancer immunotherapy using DCs transduced with Ad vectors encoding tumor-associated Ags.  相似文献   

3.
HLA-A*0201-restricted CTL against human gp100 were isolated from HLA-A*0201/K(b) (A2/K(b))-transgenic mice immunized with recombinant canarypox virus (ALVAC-gp100). These CTL strongly responded to the gp100(154-162) epitope, in the context of both the chimeric A2/K(b) and the wild-type HLA-A*0201- molecule, and efficiently lysed human HLA-A*0201(+), gp100(+) melanoma cells in vitro. The capacity of the CTL to eradicate these tumors in vivo was analyzed in A2/K(b)-transgenic transgenic mice that had received a tumorigenic dose of human uveal melanoma cells in the anterior chamber of the eye. This immune-privileged site offered the unique opportunity to graft xenogeneic tumors into immunocompetent A2/K(b)-transgenic mice, a host in which they otherwise would not grow. Importantly, systemic (i.v.) administration of the A2/K(b)-transgenic gp100(154-162)-specific CTL resulted in rapid elimination of the intraocular uveal melanomas, indicating that anti-tumor CTL are capable of homing to the eye and exerting their tumoricidal effector function. Flow cytometry analysis of ocular cell suspensions with HLA-A*0201-gp100(154-162) tetrameric complexes confirmed the homing of adoptively transferred CTL. Therefore, the immune-privileged state of the eye permitted the outgrowth of xenogeneic uveal melanoma cells, but did not protect these tumors against adoptive immunotherapy with highly potent anti-tumor CTL. These data constitute the first direct indication that immunotherapy of human uveal melanoma may be feasible.  相似文献   

4.
The cloning of cancer Ags recognized by T cells has provided potentially new tools to enhance immunity against metastatic cancer. The biological monitoring of effective immunization has, however, remained a dilemma. We describe here a sensitive molecular quantitation methodology that allows analysis of in vivo immune response to vaccination. Metastatic melanoma patients were immunized with a synthetically modified peptide epitope (209-2M) from the melanoma self-Ag gp100. Using serial gene expression analysis, we report functional evidence of vaccine-induced CTL reactivity in fresh cells obtained directly from the peripheral blood of postimmunized patients. Further, we demonstrate in vivo localization of vaccine-induced immune response within the tumor microenvironment. The results of these molecular assays provide direct evidence that peptide immunization in humans can result in tumor-specific CTL that localize to metastatic sites.  相似文献   

5.
BACKGROUND: We have previously shown that xenogenic DNA vaccines encoding rat neu and melanosomal differentiation Ag induce tumor immunity. Others have developed vaccines targeting tumor neovasculature. Tumor endothelial marker 8 (TEM8) is expressed in the neovasculature of human tumors, and in the mouse melanoma B16, but its expression is limited in normal adult tissues. We describe a DNA vaccine combining xenogeneic tumor Ag and TEM8. METHODS: In-situ hybridization was used to detect TEM8 RNA in mouse tumors. Mice transgenic for the rat neu proto-oncogene were immunized with DNA vaccines encoding TEM8 and the extracellular domain of rat neu and challenged with the 233-VSGA1 breast cancer cell line. In parallel experiments, C57BL/6 mice were immunized with TEM8 and human tyrosinase-related protein 1 (hTYRP1/hgp75) and challenged with B16F10 melanoma. RESULTS: TEM8 was expressed in the stroma of transplantable mouse breast and melanoma tumors. In both model systems, TEM8 DNA had no activity as a single agent but significantly enhanced the anit-tumor immunity of neu and hTYRP1/hgp75 DNA vaccines when given in concert. The observed synergy was dependent upon CD8+ T cells, as depletion of this cell population just prior to tumor challenge obviated the effect of the TEM8 vaccine in both tumor models. DISCUSSION: A local immune responses to TEM8 may increase inflammation or tumor necrosis within the tumor, resulting in improved Ag presentation of HER2/neu and hTYRP1/hgp75. Alternatively, TEM8 expression in host APC may act more as an adjuvant than an immunologic target.  相似文献   

6.
We have performed a detailed analysis of the recognition of melanoma Ags by the tumor-infiltrating lymphocytes (TIL) 1790, isolated from a patient who experienced a dramatic tumor regression following immunization with peptides from the gp100, MART-1, and tyrosinase Ags. This TIL was found to recognize HLA-A2-restricted CTL epitopes in tyrosinase-related protein (TRP)-2 (clone MR7) and NY-ESO-1 (clone M8). These epitopes were the same as the previously identified nonapeptide TRP-2: 180-188, and the overlapping NY-ESO-1 peptides, obtained by using lymphocytes from in vitro stimulation. We also cloned a previously unknown TRP-2 mRNA isoform (TRP-2-6b) that contained two novel exons alternatively spliced from the sixth intron between exons 6 and 7 of TRP-2 mRNA. The isoform encoded an HLA-A2-restricted antigenic epitope recognized by TIL clone MB4. An immunologic analysis of the patient's PBMC obtained before treatment showed the presence of high reactivity against NY-ESO-1 and both TRP-2 Ags, but not the Ags used for immunization. Because immune response against these Ags was less pronounced, it is possible that NY-ESO-1, TRP-2, and TRP-2-6b may be of importance in the generation of CTL-mediated tumor destruction and may have played a role in the dramatic tumor regression seen in this patient.  相似文献   

7.
Many of the Ags recognized by human melanoma-reactive CTL are derived from proteins that are also expressed in melanocytes. The possibility of self-tolerance to these epitopes has led to questions about their utility for antitumor immunotherapy. To investigate the issue, we established a preclinical model based on transgenic mice expressing a recombinant HLA-A*0201 molecule and B16 melanoma transfected to express this molecule. HLA-A*0201-restricted epitopes from the melanocyte differentiation proteins (MDP) tyrosinase and gp100 are expressed in both tumor cells and melanocytes, and the former is associated with self-tolerance. However, adoptive transfer of tyrosinase or gp100-reactive CTL developed from tolerant mice delayed tumor outgrowth, as did immunization with MDP peptide-pulsed dendritic cells. Protection was enhanced by the use of peptide ligands containing conservative substitutions that were cross-reactive with the original Ags. These data establish that CTL populations reactive against MDP-derived self-Ags can be activated to mount effective antitumor immunity and strongly support their continued development for tumor immunotherapy in humans.  相似文献   

8.
DNA immunization offers a novel means to induce cellular immunity in a population with a heterogeneous genetic background. An immunorecessive cytotoxic T-lymphocyte (CTL) epitope in influenza virus nucleoprotein (NP), residues 218 to 226, was identified when mice were immunized with a plasmid DNA encoding a full-length mutant NP in which the anchor residues for the immunodominant NP147-155 epitope were altered. Mice immunized with wild-type or mutant NP DNA were protected from lethal cross-strain virus challenge, and the protection could be adoptively transferred by immune splenocytes, indicating the role of cell-mediated immunity in the protection. DNA immunization is capable of eliciting protective cellular immunity against both immunodominant and immunorecessive CTL epitopes in the hierarchy seen with virus infection.  相似文献   

9.
CD4+ T cells play a central role in the induction and persistence of CD8+ T cells in several models of autoimmune and infectious disease. To improve the efficacy of a synthetic peptide vaccine based on the self-Ag, gp100, we sought to provide Ag-specific T cell help. To identify a gp100 epitope restricted by the MHC class II allele with the highest prevalence in patients with malignant melanoma (HLA-DRB1*0401), we immunized mice transgenic for a chimeric human-mouse class II molecule (DR4-IE) with recombinant human gp100 protein. We then searched for the induction of CD4+ T cell reactivity using candidate epitopes predicted to bind to DRB1*0401 by a computer-assisted algorithm. Of the 21 peptides forecasted to bind most avidly, murine CD4+ T cells recognized the epitope (human gp10044-59, WNRQLYPEWTEAQRLD) that was predicted to bind best. Interestingly, the mouse helper T cells also recognized human melanoma cells expressing DRB1*0401. To evaluate whether human CD4+ T cells could be generated from the peripheral blood of patients with melanoma, we used the synthetic peptide h-gp10044-59 to sensitize lymphocytes ex vivo. Resultant human CD4+ T cells specifically recognized melanoma, as measured by tumor cytolysis and the specific release of cytokines and chemokines. HLA class II transgenic mice may be useful in the identification of helper epitopes derived from Ags of potentially great clinical utility.  相似文献   

10.
It is commonly believed that T cells have difficulty reaching tumors located in the brain due to the presumed "immune privilege" of the central nervous system (CNS). Therefore, we studied the biodistribution and anti-tumor activity of adoptively transferred T cells specific for an endogenous tumor-associated antigen (TAA), gp100, expressed by tumors implanted in the brain. Mice with pre-established intracranial (i.c.) tumors underwent total body irradiation (TBI) to induce transient lymphopenia, followed by the adoptive transfer of gp100(25-33)-specific CD8+ T cells (Pmel-1). Pmel-1 cells were transduced to express the bioluminescent imaging (BLI) gene luciferase. Following adoptive transfer, recipient mice were vaccinated with hgp100(25-33) peptide-pulsed dendritic cells (hgp100(25-33)/DC) and systemic interleukin 2 (IL-2). This treatment regimen resulted in significant reduction in tumor size and extended survival. Imaging of T cell trafficking demonstrated early accumulation of transduced T cells in lymph nodes draining the hgp100(25-33)/DC vaccination sites, the spleen and the cervical lymph nodes draining the CNS tumor. Subsequently, transduced T cells accumulated in the bone marrow and brain tumor. BLI could also detect significant differences in the expansion of gp100-specific CD8+ T cells in the treatment group compared with mice that did not receive either DC vaccination or IL-2. These differences in BLI correlated with the differences seen both in survival and tumor infiltrating lymphocytes (TIL). These studies demonstrate that peripheral tolerance to endogenous TAA can be overcome to treat tumors in the brain and suggest a novel trafficking paradigm for the homing of tumor-specific T cells that target CNS tumors.  相似文献   

11.
An intact T cell compartment and IFN-gamma signaling are required for protective immunity against Chlamydia. In the mouse model of Chlamydia pneumoniae (Cpn) infection, this immunity is critically dependent on CD8(+) T cells. Recently we reported that Cpn-infected mice generate an MHC class I-restricted CD8(+) Tc1 response against various Cpn Ags, and that CD8(+) CTL to multiple epitopes inhibit Cpn growth in vitro. Here, we engineered a DNA minigene encoding seven H-2(b)-restricted Cpn CTL epitopes, the universal pan-DR epitope Th epitope, and an endoplasmic reticulum-translocating signal sequence. Immunization of C57BL/6 mice with this construct primed IFN-gamma-producing CD8(+) CTL against all seven CTL epitopes. CD8(+) T cell lines generated to minigene-encoded CTL epitopes secreted IFN-gamma and TNF-alpha and exhibited CTL activity upon recognition of Cpn-infected macrophages. Following intranasal challenge with Cpn, a 3.6 log reduction in mean lung bacterial numbers compared with control animals was obtained. Using a 20-fold increase in the Cpn challenging dose, minigene-vaccinated mice had a 60-fold reduction in lung bacterial loads, compared with controls. Immunization and challenge studies with beta(2)-microglobulin(-/-) mice indicated that the reduction of lung Cpn burdens was mediated by the MHC class I-dependent CD8(+) T cells to minigene-included Cpn CTL epitopes, rather than by pan-DR epitope-specific CD4(+) T cells. This constitutes the first demonstration of significant protection achieved by immunization with a CD8(+) T cell epitope-based DNA construct in a bacterial system and provides the basis for the optimal design of multicomponent anti-Cpn vaccines for humans.  相似文献   

12.
We engineered a multiepitope DNA minigene encoding nine dominant HLA-A2.1- and A11-restricted epitopes from the polymerase, envelope, and core proteins of hepatitis B virus and HIV, together with the PADRE (pan-DR epitope) universal Th cell epitope and an endoplasmic reticulum-translocating signal sequence. Immunization of HLA transgenic mice with this construct resulted in: 1) simultaneous CTL induction against all nine CTL epitopes despite their varying MHC binding affinities; 2) CTL responses that were equivalent in magnitude to those induced against a lipopeptide known be immunogenic in humans; 3) induction of memory CTLs up to 4 mo after a single DNA injection; 4) higher epitope-specific CTL responses than immunization with DNA encoding whole protein; and 5) a correlation between the immunogenicity of DNA-encoded epitopes in vivo and the in vitro responses of specific CTL lines against minigene DNA-transfected target cells. Examination of potential variables in minigene construct design revealed that removal of the PADRE Th cell epitope or the signal sequence, and changing the position of selected epitopes, affected the magnitude and frequency of CTL responses. Our results demonstrate the simultaneous induction of broad CTL responses in vivo against multiple dominant HLA-restricted epitopes using a minigene DNA vaccine and underline the utility of HLA transgenic mice in development and optimization of vaccine constructs for human use.  相似文献   

13.
中国HIV-1流行毒株的DNA疫苗的初步研究   总被引:6,自引:3,他引:3  
为研制针对我国HIV-1流行毒株的艾滋病毒疫苗,构建了具有代表性的gag和gp120核酸疫苗,进行了初步的小鼠免疫实验。结果初步显示:(1)免疫Balb/C小鼠可以产生HIV-1特异性的体液和细胞免疫;(2)gag和gp120基因联合免疫可以同时诱发针对gag和gp120的细胞和体液免疫反应,而且效果比各自单独免疫要好;(3)B亚型gp120基因免疫可以诱发识别C亚型gp120抗原的CTL反应。本  相似文献   

14.
Twenty separate tumor infiltrating lymphocyte (TIL) bulk cultures and a tumor cell line were originated simultaneously from a fine needle aspiration biopsy of a metastasis in a patient with melanoma (F001) previously immunized with the HLA-A*0201-associated gp100:209-217(210 M) peptide. None of the TIL recognized gp100. However, 12 recognized autologous (F001-MEL) and allogeneic melanoma cells expressing the HLA haplotype A*0201, B*0702, Cw*0702. Further characterization of F001-MEL demonstrated loss of gp100/PMel17, severely decreased expression of other melanoma differentiation Ags and retained expression of tumor-specific Ags. Transfection of HLA class I alleles into B*0702/Cw*0702-negative melanoma cell lines identified HLA-Cw*0702 as the restriction element for F001-TIL. A cDNA library from F001-MEL was used to transfect IFN-alpha-stimulated 293 human embryonal kidney (293-HEK) cells expressing HLA-Cw*0702. A 100-gene pool was identified that induced recognition of 293-HEK cells by F001-TIL. Subsequent cloning of the pool identified a cDNA sequence homologous, except for one amino acid (aa 187 D-->A), to MAGE-12. Among 25 peptide sequences from MAGE-12 with the HLA-Cw*0702 binding motif, MAGE-12:170-178 (VRIGHLYIL) induced IFN-gamma release by F001-TIL when pulsed on F001-EBV-B cells at concentrations as low as 10 pg/ml. Peptide sequences from MAGE-1, 2, 3, 4a, and 6 aligned to MAGE-12:170-178 were not recognized by F001-TIL. In summary a TIL recognizing a MAGE protein was developed from an HLA-A*0201 expressing tumor with strongly reduced expression of melanoma differentiation Ags. Persisting tumor-specific Ag expression maintained tumor immune competence suggesting that tumor-specific Ags/melanoma differentiation Ags may complement each other in the context of melanoma Ag-specific vaccination.  相似文献   

15.
We have generated a number of mAb against various epitopes on the external envelope glycoprotein, gp46, of human T cell leukemia virus type I (HTLV-I) from a WKA rat immunized with a recombinant vaccinia virus containing the HTLV-I env gene. Among these mAb, one group of mAb, represented by a mAb designated LAT-27, could neutralize the infectivity of HTLV-I, as determined by a HTLV-I-mediated cell fusion inhibition assay. LAT-27 also interfered with transformation of normal T lymphocytes by HTLV-I in vitro. An antibody-binding assay using overlapping synthetic oligopeptides showed that LAT-27 bound specifically to 10-mer peptides that contained the gp46 amino acid sequence 191-196 (Leu-Pro-His-Ser-Asn-Leu). Antibodies from HTLV-I+ humans interfered with the binding of LAT-27 to gp46 Ag. Sera from rabbits immunized with a LAT-27-reactive peptide, 190-199, conjugated with OVA, but not sera from OVA-immunized rabbits, reacted with gp46 Ag and neutralized infectivity of HTLV-I. These results show that the HTLV-I neutralization epitope recognized by LAT-27 locates to the gp46 amino acids 191-196, and that immunization with a peptide containing the LAT-27 epitope can elicit an HTLV-I neutralizing antibody response.  相似文献   

16.
Twelve peptides derived from melanocyte differentiation proteins and cancer-testis Ags were combined and administered in a single mixture to patients with resected stage IIB, III, or IV melanoma. Five of the 12 peptides included in this mixture had not previously been evaluated for their immunogenicity in vivo following vaccination. We report in this study that at least three of these five peptides (MAGE-A1(96-104), MAGE-A10(254-262), and gp100(614-622)) are immunogenic when administered with GM-CSF in Montanide ISA-51 adjuvant. T cells secreting IFN-gamma in response to peptide-pulsed target cells were detected in peripheral blood and in the sentinel immunized node, the node draining a vaccine site, after three weekly injections. The magnitude of response typically reached a maximum after two vaccines, and though sometimes diminished thereafter, those responses typically were still detectable 6 wks after the last vaccines. Most importantly, tumor cell lines expressing the appropriate HLA-A restriction element and MAGE-A1, MAGE-A10, or gp100 proteins were lysed by corresponding CTL. This report supports the continued use of the MAGE-A1(96-104), MAGE-A10(254-262), and gp100(614-622) epitopes in peptide-based melanoma vaccines and thus expands the list of immunogenic peptide Ags available for human use. Cancer-testis Ags are expressed in multiple types of cancer; thus the MAGE-A1(96-104) and MAGE-A10(254-262) peptides may be considered for inclusion in vaccines against cancers of other histologic types, in addition to melanoma.  相似文献   

17.
We constructed pSin-SV40-HDV-SV40pA, an improved Sindbis DNA expression vector, and evaluated the potential of this vector system for brain tumor therapy. We investigated whether immunizing mice with xenogeneic DNA encoding human gp100 and mouse IL-18 would enhance the antitumor responses. To study the immune mechanisms involved in tumor regression, we examined tumor growth in B16-gp100-implanted brain tumor models using T-cell subset-depleted and IFN-gamma-neutralized mice. Hugp100/mIL-18 vaccination was also investigated for its antitumor effects against the wild-type murine B16 tumor, which expresses the murine gp100 molecule. Genetic immunization using plasmid pSin 9001 DNA codelivery of human gp100 and mouse IL-18 resulted in enhanced protective and therapeutic effects on the malignant brain tumors. The antitumor and protective effects were mediated by both CD4(+)/CD8(+) T cells and IFN-gamma. Vaccination with hugp100/mIL-18 conferred a significant survival merit to wild-type B16 tumor-harboring mice. Immunogene therapy with the improved Sindbis virus vector expressing xenogeneic gp100 and syngeneic IL-18 may be an excellent approach for developing a new treatment protocol. Thus, the Sindbis DNA system may represent a novel approach for the treatment of malignant brain tumors.  相似文献   

18.
The breaking of immune tolerance against self epidermal growth factor receptor (EGFr) should be a useful approach for the treatment of receptor-positive tumors with active immunization. To test this concept, we constructed a plasmid DNA encoding extracellular domain of xenogeneic (human) EGFr (hEe-p) or corresponding control mouse EGFr (mEe-p) and empty vector (c-p). Mice immunized with hEe-p showed both protective and therapeutic antitumor activity against EGFr-positive tumor. Sera isolated from the hEe-p-immunized mice exhibited positive staining for EGFr-positive tumor cells in flow cytometric analysis and recognized a single 170-kDa band in Western blot analysis. Ig subclasses responded to rEGFr proteins were elevated in IgG1, Ig2a, and Ig2b. There was the deposition of IgG on the tumor cells. Adoptive transfer of the purified Igs showed the antitumor activity. The increased killing activity of CTL against EGFr-positive tumor cells could be blocked by anti-CD8 or anti-MHC class I mAb. In vivo depletion of CD4(+) T lymphocytes could completely abrogate the antitumor activity, whereas the depletion of CD8(+) cells showed partial abrogation. The adoptive transfer of CD4-depleted (CD8(+)) or CD8-depleted (CD4(+)) T lymphocytes isolated from mice immunized with hEe-p vaccine showed the antitumor activity. In addition, the increase in level of both IFN-gamma and IL-4 was found. Taken together, these findings may provide a new vaccine strategy for the treatment of EGFr-positive tumors through the induction of the autoimmune response against EGFr in a cross-reaction between the xenogeneic homologous and self EGFr.  相似文献   

19.
An intranasal DNA vaccine prime followed by a gp41 peptide booster immunization was compared with gp41 peptide and control immunizations. Serum HIV-1-specific IgG and IgA as well as IgA in feces and vaginal and lung secretions were detected after immunizations. Long-term humoral immunity was studied for up to 12 mo after the booster immunization by testing the presence of HIV-1 gp41- and CCR5-specific Abs and IgG/IgA-secreting B lymphocytes in spleen and regional lymph nodes in immunized mice. A long-term IgA-specific response in the intestines, vagina, and lungs was obtained in addition to a systemic immune response. Mice immunized only with gp41 peptides and L3 adjuvant developed a long-term gp41-specific serum IgG response systemically, although over a shorter period (1-9 mo), and long-term mucosal gp41-specific IgA immunity. HIV-1-neutralizing serum Abs were induced that were still present 12 mo after booster immunization. HIV-1 SF2-neutralizing fecal and lung IgA was detectable only in the DNA-primed mouse groups. Intranasal DNA prime followed by one peptide/L3 adjuvant booster immunization, but not a peptide prime followed by a DNA booster, was able to induce B cell memory and HIV-1-neutralizing Abs for at least half of a mouse's life span.  相似文献   

20.
Involvement of tumor-Ag specific CD4(+) and CD8(+) T cells could be critical in the generation of an effective immunotherapy for cancer. In an attempt to optimize the T cell response against defined tumor Ags, we previously developed a method allowing transgene expression in human dendritic cells (DCs) using retroviral vectors. One advantage of using gene-modified DCs is the potential ability to generate CD8(+) T cells against multiple class I-restricted epitopes within the Ag, thereby eliciting a broad antitumor immune response. To test this, we generated tumor-reactive CD8(+) T cells with DCs transduced with the melanoma Ag gp100, for which a number of HLA-A2-restricted epitopes have been described. Using gp100-transduced DCs, we were indeed able to raise T cells recognizing three distinct HLA-A2 epitopes within the Ag, gp100(154-162), gp100(209-217), and gp100(280-288). We next tested the ability of transduced DCs to raise class II-restricted CD4(+) T cells. Interestingly, stimulation with gp100-transduced DCs resulted in the generation of CD4(+) T cells specific for a novel HLA-DRbeta1*0701-restricted epitope of gp100. The minimal determinant of this epitope was defined as gp100(174-190) (TGRAMLGTHTMEVTVYH). These observations suggest that retrovirally transduced DCs have the capacity to present multiple MHC class I- and class II-restricted peptides derived from a tumor Ag, thereby eliciting a robust immune response against that Ag.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号