首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
植物无融合生殖研究进展   总被引:13,自引:0,他引:13  
本文综述了植物无融合生殖研究进展。无融合生殖能固定杂种优势,是新的研究热点。无融合合生殖转充研究取得长足进展。胚胎发生研究手段由切片技术逐渐发展为整体透明、组化荧光技术。大孢子母细胞(MMC)细胞壁无胼胝质(callose)及MMC哑铃状核是二倍性孢子形成区别于有性生殖的特征。DNA分子标记是无融合生殖研究的新的有效工具,狼尾草属、摩擦禾属的无融合生殖分子标记已被找到,并且后者已定位到玉米第6染色  相似文献   

2.
披碱草Elymus rectisetus(Nees in Lehm)A Loeve et Connor(2n=6x=42),SSYYWW)是目前发现的小麦族(Triticeae)中唯一的无融合生殖种,属二倍性孢子形成的假受精无融合生殖类型,无融合生殖能固定杂种优势,简化育种程序,缩短育种年限,因此E.rectisetus无融合生殖及其向小麦中导入的研究一直受到遗传育种学家的重视,与有性生殖相比,无融合生殖类型大孢子母细胞(MMC)的形成有三个显著特点:(1)MMC在早前期合点形成液泡;(2)MMC核显著伸长,呈椭圆形或哑玲形;(3)MMC周围缺乏含,胼胝质的细胞壁E.rectisetus与披碱草属内的种间杂交取得较大进展,了其分类和遗传学研究。E.rectisetus与近缘属杂交成功例子逐渐增多,目前国内外已成功进行了普通小麦与E.rectisetus属间杂交,为最终将E.rectisetus无融合生殖基因导入小麦奠定了基础。  相似文献   

3.
综述了分子标记和mRNA差异显示技术在植物无融合生殖研究中的应用进展。并对今后的研究方向进行了探讨。  相似文献   

4.
雀稗属无融合生殖研究进展   总被引:1,自引:0,他引:1  
雀稗属(Paspalum)为禾本科黍亚科多年生或一年生植物,是黍亚科内最有经济价值的类群之一。雀稗属植物种群极其复杂,大多数为多倍体。由于多倍体的存在及有性生殖的自交不亲和等原因,雀稗属植物表现出复杂多样的生殖特性,是禾本科中具备无融合生殖特性种类最多的属。对雀稗属无融合生殖的分布、无融合生殖相关的细胞学和胚胎学基础、无融合生殖的特点及其遗传学和分子生物学研究进展进行了综述。  相似文献   

5.
植物无融合生殖的筛选和鉴定研究进展   总被引:2,自引:0,他引:2  
植物无融合生殖具有复杂的发育过程,与细胞学、遗传学、生物化学和分子生物学等相关的各种技术均被应用于植物无融合生殖的筛选和鉴定.本文结合新近发表的研究文献,介绍了常规的植物无融合生殖筛选和鉴定技术的新应用,评介了流式细胞种子筛选技术、胚珠整体透明技术、外源标记基因转入法等植物无融合生殖筛选和鉴定的新技术,并对各种筛选和鉴定技术的优势和不足进行了评述.  相似文献   

6.
植物无融合生殖的遗传机理和分子机理的研究进展   总被引:9,自引:0,他引:9  
利用植物无融合生殖固定杂种优势,已被认为是一条生产杂交种子的高效途径。近年来,由于RAPD、RFLP和差异显示等技术的应用,已使植物无融合生殖的研究面貌一新。特别是一系列与无融合生殖有关的特异DNA片段的发现,为深入了解其遗传机理和分子机理增加了大量新的知识,这些知识无疑为定位和克隆植物无融合生殖基因,进而利用遗传操作的手段来改变植物的生殖方式积累了必要的理论基础。本文对植物无融合生殖遗传机理和分子机理的研究进展作了综述。 Abstract:Apomixis allows the establishment of genetically stable seed propagating clones of crops,which can perpetuate themselves across countless sporophytic generations.This asexual mode of reproduction,which naturally occurs in some angiosperms,may prove to be an unrivalled tool to improve crop yields.The current state of knowledge on the molecular and genetic basis of apomixis is reviewed.  相似文献   

7.
以新疆‘新新2’、‘温185’2个主栽早实核桃品种为材料,通过对雌花采取套硫酸纸袋、聚乙烯醇封柱头、切柱头等3种无融合生殖处理,以自然授粉为对照,观察分析了无融合生殖胚乳和胚发育过程,结果显示:(1)‘新新2’的自然座果率比‘温185’要高,但其无融合生殖率却略低于‘温185’。(2)无融合生殖形成的果实较正常自然生长形成的果实略小。(3)2个核桃品种胚囊均属蓼型,历经10d左右发育成熟。(4)2个品种无融合生殖胚均由卵细胞分裂发育而来,经原胚期、球形期、心形期、鱼雷形期、成熟期发育完成,历经10d左右,属孤雌生殖类型。(5)2个核桃品种均属核型胚乳,8d左右形成胚乳细胞。  相似文献   

8.
无融合生殖是与有性生殖、无性生殖并存的三大生殖系统之一。自从1745年发现弧雄生殖现象以来,关于无融合生殖的分类、形态结构、胚胎发生、遗传进化、生理生化等方面的研究不断开展,已从36个科300多种植物中发现无融合生殖现象。特别是八十年代以来,无融合生殖研究已成为生物学科的新热点。全世界几十个国家,200多个实验室正在从事这一研究。国际性无融合生殖研究协作网已经成立。国际性学术会议相继召开。关于无融合生殖的专著已经出版,专门杂志也已问世。这些事实说明,无融合生殖学这个生物学科的生长点已经崛起。但是由于无融合生殖所具有的特殊性给研究带来许多困难,给生物学科的诸多领域留下了不少空白点和世纪性难题。有关无融合生殖的概念和范围,无融合生殖的遗传,无融合生殖是进化还是退化,无融合生殖在胚胎学、生殖生物学、发育生物学中的重大问题,如:为何无融合生殖植物大小孢子母细胞分裂行为不一致?二倍体孢子生殖中大孢子母细胞胼胝质缺乏是无融合生殖的因还是果?怎样理解同一珠心组织中不同细胞分化?无融合生殖胆和胚乳的形成机制和相互关系以及在作物育种中应用的诱人前景都是当前研究的热门话题。本文都进行了必要的介绍和讨论。  相似文献   

9.
崛起的生物学科生长点——无融合生殖学   总被引:11,自引:0,他引:11  
无融合生殖是与有性生殖、无性生殖并存的三大生殖系统之一。自从1745年发现阪雄生殖现象以来,关于无融合生殖的分类、形态结构、胚胎发生、遗传进化、生理生化等方面的研究不断开展,已从36个科300多种植物中发现无融合生殖现象。特别是八十年代以来,无融合生殖研究已成为生物学科的新热点。全世界几十个国家,200多个实验室正在从事这一研究。国际性无融合生殖研究协作网已经成立。国际性学术会议相继召开。关于无融  相似文献   

10.
白羊草无融合生殖现象的研究初报   总被引:1,自引:0,他引:1  
白羊草无融合生殖现象的研究初报肖辅珍,王景林(首都师范大学,北京100037)白羊草(Bothriochloaischaemum),禾本科孔颖草属。本属我国3种,2变种,北京1种即白羊草。本属中的小花孔颖草国外已有报道其无融合生殖情况,无融合生殖产生...  相似文献   

11.
渗透胁迫是指由于环境因素的变化使植物不能得到充足水分的一种状况。常见的渗透胁迫因素有干旱、盐害及冻害等。渗透胁迫会严重影响植物的生长发育及产量。植物在长期的进化过程中形成了一些保护机制能减轻渗透胁迫造成的伤害。比如有些植物在形态上演化生成盐腺,能排出体内的过量盐分以逃避盐害。但在渗透胁迫下几乎所有的植物都能合成一些无毒性的小分子有机物作为渗透调节剂来维持细胞内渗透势的相对稳定。在分子水平上...  相似文献   

12.
Apomixis (asexual seed formation) is the result of a plant gaining the ability to bypass the most fundamental aspects of sexual reproduction: meiosis and fertilization. Without the need for male fertilization, the resulting seed germinates a plant that develops as a maternal clone. This dramatic shift in reproductive process has been documented in many flowering plant species, although no major seed crops have been shown to be capable of apomixis. The ability to generate maternal clones and therefore rapidly fix desirable genotypes in crop species could accelerate agricultural breeding strategies. The potential of apomixis as a next-generation breeding technology has contributed to increasing interest in the mechanisms controlling apomixis. In this review, we discuss the progress made toward understanding the genetic and molecular control of apomixis. Research is currently focused on two fronts. One aims to identify and characterize genes causing apomixis in apomictic species that have been developed as model species. The other aims to engineer or switch the sexual seed formation pathway in non-apomictic species, to one that mimics apomixis. Here we describe the major apomictic mechanisms and update knowledge concerning the loci that control them, in addition to presenting candidate genes that may be used as tools for switching the sexual pathway to an apomictic mode of reproduction in crops.  相似文献   

13.
RAPD技术在植物遗传育种上的应用   总被引:8,自引:0,他引:8  
RAPD技术以其快速、简便、高效等优点,已广泛应用于多个学科、领域。本文综述了RAPD技术在植物遗传育种上的应用,如遗传多样性研究、分子标记辅助育种、品种(杂种)真实性鉴定、基因定位、构建遗传图谱等。  相似文献   

14.
Apomixis for crop improvement   总被引:2,自引:0,他引:2  
Summary Apomixis is a genetically controlled reproductive process by which embryos and seeds develop in the ovule without female meiosis and egg cell fertilization. Apomixis produces seed progeny that are exact replicas of the mother plant. The major advantage of apomixis over sexual reproduction is the possibility to select individuals with desirable gene combinations and to propagate them as clones. In contrast to clonal propagation through somatic embryogenesis or in vitro shoot multiplication, apomixis avoids the need for costly processes, such as the production of artificial seeds and tissue culture. It simplifies the processes of commercial hybrid and cultivar production and enables a large-scale seed production economically in both seed- and vegetatively propagated crops. In vegetatively reproduced plants (e.g., potato), the main applications of apomixis are the avoidance of phytosanitary threats and the spanning of unfavorable seasons. Because of its potential for crop improvement and global agricultural production, apomixis is now receiving increasing attention from both scientific and industrial sectors. Harnessing apomixis is a major goal in applied plant genetic engineering. In this regard, efforts are focused on genetic and breeding strategies in various plant species, combined with molecular methods to analyze apomictic and sexual modes of reproduction and to identify key regulatory genes and mechanisms underlying these processes. Also, investigations on the components of apomixis, i.e., apomeiosis, parthenogenesis, and endosperm development without fertilization, genetic screens for apomictic mutants and transgenic approaches to modify sexual reproduction by using various regulatory genes are receiving a major effort. These can open new avenues for the transfer of the apomixis trait to important crop species and will have far-reaching potentials in crop improvement regarding agricultural production and the quality of the products.  相似文献   

15.
The reproductive system determines the way in which gametes develop and interact to form a new organism. Therefore, it exerts the primary level of control of genotypic frequencies in plant populations, and plays a fundamental role in plant breeding. A basic understanding of plant reproductive development will completely transform current breeding strategies used for seed production. Apomixis is an asexual form of reproduction in which embryogenesis occurs in a cell lineage lacking both meiosis and fertilization, and that culminates in the formation of viable progeny genetically identical to the mother plant. The transfer of apomixis into sexual crops will allow the production of self-perpetuating improved hybrids, and the fixation of any desired heterozygous genotype. The initiation of apomictic development invariably takes place at early stages of ovule ontogeny, before the establishment of the megagametophytic phase. The developmental versatility associated with megagametophyte formation suggests that the genetic and molecular regulation of apomixis is intimately related to the regulation of sexuality. Differences between the initiation of sexual and apomictic development may be determined by regulatory genes that act during megasporogenesis, and that control events leading to the formation of unreduced female gametophytes. To test this hypothesis, we are isolating and characterizing genes that act during megasporogenesis inArabidopsis thaliana and investigating their potential role in the induction of apomixis. We are using a recently established transposon-based enhancer detection and gene trap insertional mutagenesis system that allows the identification of genes based on their expression patterns. An initial screen of transposants has yielded over 20 lines conferring restricted GUS expression during early ovule development. We have obtained the sequence of genomic fragments flanking the transposon insertion. Several have homology to genes playing important roles in plant and animal development. They include cell cycle regulators, enzymes involved in callose hydrolysis, leucine-rich repeat protein kinase receptors, and expressed sequence tags (ESTs) of unknown function. Independently, a genetic screen allows the identification of female sterile mutants defective in megasporogenesis. Results from these experiments will improve our basic understanding of reproductive development in plants, and will set the basis for a sustained effort in plant germ line biotechnology, a first step toward a flexible transfer of apomixis into a large variety of sexual crops.  相似文献   

16.
Apomixis is defined as the asexual plant reproduction through seeds that results in the production of genetically uniform progeny. In fact, apomixis could be considered as a natural way of cloning. Currently there are more than 400 plant species known to use apomixis as a strategy for their propagation. The primary fundamental aspects of apomixis are the bypassing of meiosis and parthenogenetic development of the embryo without fertilization Apomixis attracts special attention because of its potential value for agriculture, as it could be harnessed for plant breeding programs enabling the permanent fixation of heterosis in crop plants. A better understanding of the molecular and genetic regulation of apomixis is important for developmental and evolutionary perspectives but also for implementation of engineering of apomixis traits into agricultural crop plants. Despite apomixis is considered as one of the key technologies for the improving agriculture, it is currently not fully known how the genetic and molecular regulation of this important trait occurs. In this review, an up to date information on the biology of apomixis and the known genes and genetic loci associated with regulation of different components of apomixis is provided.  相似文献   

17.
Apomixis is desirable in agriculture as a reproductive strategy for cloning plants by seeds. Because embryos derive from the parthenogenic development of apomeiotic egg cells, apomixis excludes fertilization in addition to meiotic segregation and recombination, resulting in offspring that are exact replicas of the parent. Introgression of apomixis from wild relatives to crop species and transformation of sexual genotypes into apomictically reproducing ones are long-held goals of plant breeding. In fact, it is generally accepted that the introduction of apomixis into agronomically important crops will have revolutionary implications for agriculture. This review deals with the current genetic and molecular findings that have been collected from model species to elucidate the mechanisms of apomeiosis, parthenogenesis and apomixis as a whole. Our goal is to critically determine whether biotechnology can combine key genes known to control the expression of the processes miming the main components of apomixis in plants. Two natural apomicts, as the eudicot Hypericum perforatum L. (St. John's wort) and the monocot Paspalum spp. (crowngrass), and the sexual model species Arabidopsis thaliana are ideally suited for such investigations at the genomic and biotechnological levels. Some novel views and original concepts have been faced on this review, including (i) the parallel between Y-chromosome and apomixis-bearing chromosome (e.g., comparative genomic analyses revealed common features as repression of recombination events, accumulation of transposable elements and degeneration of genes) from the most primitive (Hypericum-type) to the most advanced (Paspalum-type) in evolutionary terms, and (ii) the link between apomixis and gene-specific silencing mechanisms (i.e., likely based on chromatin remodelling factors), with merging lines of evidence regarding the role of auxin in cell fate specification of embryo sac and egg cell development in Arabidopsis. The production of engineered plants exhibiting apomictic-like phenotypes is critically reviewed and discussed.  相似文献   

18.

Background

Apomixis is an alternative route of plant reproduction that produces individuals genetically identical to the mother plant through seeds. Apomixis is desirable in agriculture, because it guarantees the perpetuation of superior genotypes (i.e. heterotic hybrid seeds) by self-seeding without loss of hybrid vigour. The Paspalum genus, an archetypal model system for mining apomixis gene(s), is composed of about 370 species that have extremely diverse reproductive systems, including self-incompatibility, self-fertility, full sexual reproduction, and facultative or obligate apomixis. Barriers to interspecific hybridization are relaxed in this genus, allowing the production of new hybrids from many different parental combinations. Paspalum is also tolerant to various parental genome contributions to the endosperm, allowing analyses of how sexually reproducing crop species might escape from dosage effects in the endosperm.

Scope

In this article, the available literature characterizing apomixis in Paspalum spp. and its use in breeding is critically reviewed. In particular, a comparison is made across species of the structure and function of the genomic region controlling apomixis in order to identify a common core region shared by all apomictic Paspalum species and where apomixis genes are likely to be localized. Candidate genes are discussed, either as possible genetic determinants (including homologs to signal transduction and RNA methylation genes) or as downstream factors (such as cell-to-cell signalling and auxin response genes) depending, respectively, on their co-segregation with apomixis or less. Strategies to validate the role of candidate genes in apomictic process are also discussed, with special emphasis on plant transformation in natural apomictic species.  相似文献   

19.
Apomixis in agriculture: the quest for clonal seeds   总被引:8,自引:0,他引:8  
Apomixis, or asexual reproduction through seeds, is a natural trait that could have an immense positive impact on crop production. Apomictic breeding strategies could allow the fixation and indefinite propagation of any desired genotype, however complex. Apomicts display a wide variety of developmental mechanisms, which can be viewed as a short-circuiting of sexual development. Gametophytic and sporophytic apomixis are distinguished by the developmental origin of apomictically derived embryos. Genetic studies suggest that individual elements of gametophytic apomixis, such as apomeiosis and parthenogenesis, are either controlled by one or two dominant Mendelian factors. As recombination around apomeiosis loci is suppressed, it is currently not known how complex these loci are. Much less is known regarding the genetic control of sporophytic apomixis but initial studies suggest a complex genetic control. Genetic analyses of sexual reproduction in plant model systems have identified genes that, when mutated, display elements of apomixis. Such studies help in the identification of candidate genes and promoters that can be used for the de novo engineering of apomixis through biotechnology. Molecular genetic studies in apomictic and sexual systems will generate the knowledge necessary for the engineering of conditional apomixis technology. Approaches encouraging collaboration and widespread dissemination of the acquired knowledge will constitute the most innovative route to the development, deployment and acceptance of apomixis technology in agriculture.  相似文献   

20.
Apomixis technology development-virgin births in farmers' fields?   总被引:1,自引:0,他引:1  
Apomixis is the process of asexual reproduction through seed, in the absence of meiosis and fertilization, generating clonal progeny of maternal origin. Major benefits to agriculture could result from harnessing apomixis in crop plants. Although >400 apomictic plant species are known, apomixis is rare among crop plants, and the transfer of apomixis to crop varieties by conventional breeding has been largely unsuccessful. Because apomictic and sexual pathways are closely related, de novo engineering of apomixis might be achieved in sexually reproducing crops. Early consideration of issues relating to biosafety and intellectual property (IP) management can facilitate the acceptance and deployment of apomixis technology in agriculture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号