首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
大白×梅山杂交组合肉质性状的数量性状位点定位分析   总被引:4,自引:0,他引:4  
为寻找影响猪肉质数量性状基因位点的染色体区域 ,以 3头英系大白公猪和 7头梅山母猪建立F2 资源家系。随机选留 14 7头F2 代个体 (1998年 81头 ,2 0 0 0年 66头 ) ,经检测均获得肉质性状表型数据。对资源家系内的所有个体位于染色体 1、2、3、4、6和 7上的 48个微卫星位点进行扩增。利用线性模型最小二乘法分别对各年度及两年综合后的肉质性状进行数量性状位点 (QTL)区间定位 ,利用置换法确定显著性阈值。研究结果表明 :在 2 0 0 0年群体中 ,猪 4号染色体 (SSC4)上定位了肌内脂肪QTL ,达到染色体极显著水平 (P <0 0 1)和基因组显著水平 (P <0 0 5) ,解释表型变异为 5 2 4% ,梅山猪具有增加肌内脂肪QTL ;两年度群体综合后 ,在上述 4号染色体同一区间 ,肌内脂肪QTL接近染色体显著水平 ;股二头肌pH值和半棘肌pH值QTL分别定位在SSC1和 3上 ;在 1998年和 2 0 0 0年群体中分别发现 1个和 3个达染色体显著水平 (P <0 0 5)的系水力QTL ;在 1998年群体中 ,肌肉含水量QTL位于SSC6;两年综合群体中 ,SSC2、6和 7上定位了肌肉含水量QTL ,达到染色体显著水平 ,含水量QTL均有印迹效应 ,梅山和大白猪各有增效基因  相似文献   

2.
鲤饲料转化率性状的QTL 定位及遗传效应分析   总被引:1,自引:0,他引:1  
数量性状(QTL)定位是实现分子标记辅助育种、基因选择和定位、培育新品种及加快性状遗传研究进展的重要手段。饲料转化率是鲤鱼的重要经济性状和遗传改良的主要目标, 而通过QTL 定位获得与饲料转化率性状紧密连锁的分子标记以及相关基因是遗传育种的重要工具。研究利用SNP、SSR、EST-SSR 等分子标记构建鲤鱼(Cyprinus carpio L.)遗传连锁图谱并对重要经济性状进行QTL 定位。选用174 个SSR 标记、41 个EST-SSR 标记、345 个SNP 标记对德国镜鲤F2 代群体68 个个体进行基因型检测, 用JoinMap4.0 软件包构建鲤鱼遗传连锁图谱。再用MapQTL5.0 的区间作图法(Interval mapping, IM)和多QTL 区间定位法(MQMMapping, MQM)对饲料转化率性状进行QTL 区间检测, 通过置换实验(1000 次重复)确定连锁群显著性水平阈值。结果显示, 在对饲料转化率性状的多QTL 区间定位中, 共检测到15 个QTLs 区间, 分布在9 个连锁群上, 解释表型变异范围为17.70%—52.20%, 解释表型变异最大的QTLs 区间在第48 连锁群上, 为52.20%。HLJE314-SNP0919(LG25)区间标记覆盖的图距最小, 为0.164 cM; 最大的是HLJ1439-HLJ1438(LG39)区间,覆盖图距为24.922 cM。其中区间HLJ1439-HLJ1438、HLJ922 -SNP0711 解释表型变异均超过50.00%, 可能是影响饲料转化率性状的主效QTLs 区间。与饲料转化率相关的15 个QTLs 的加性效应方向并不一致, 有3个区间具有负向加性效应, 平均为?0.027; 12 个正向加性效应, 平均值为0.06。研究检测出的与鲤鱼饲料转化率性状相关的QTL 位点可为鲤鱼分子标记辅助育种和更进一步的QTL 精细定位打下基础。    相似文献   

3.
甘蓝型油菜遗传图谱的构建及单株产量构成因素的QTL分析   总被引:4,自引:0,他引:4  
王峰  官春云 《遗传》2010,32(3):271-277
采用常规品系04-1139与高产多角果品系05-1054构建的F2代群体为作图群体, 运用SSR(Simple sequence repeat)和SRAP(Sequence-related amplified polymorphism)构建分子标记遗传图谱并对甘蓝型油菜单株产量构成因素进行QTL分析。遗传图谱包含200个分子标记, 分布于19个连锁群上, 总长度1 700.23 cM, 标记间的平均距离8.50 cM。采用复合区间作图法(Composite interval mapping, CIM)对单株产量构成因素(单株有效角果数、每果粒数和千粒重)进行QTL分析, 共检测到12个QTL: 其中单株有效角果数4个QTL, 分别解释表型变异为35.64%、12.96%、28.71%和34.02%; 每果粒数获得5个QTL, 分别解释表型变异为8.41%、7.87%、24.37%、8.57%和14.31%; 千粒重获得3个QTL, 分别解释表型变异为2.33%、1.81%和1.86%。结果表明: 同一性状的等位基因增效作用可以同时来自高值亲本和低值亲本; 文章中与主效QTL连锁的标记可用于油菜产量性状的分子标记辅助选择和聚合育种。  相似文献   

4.
小鼠15号染色体上脊髓重数量性状基因座的精细定位   总被引:1,自引:0,他引:1  
目的以前的研究结果表明,控制小鼠脊髓重的一个数量性状基因座(QTL)位于15号染色体D15Mit158附近,跨度约30cM。为分离和确认脊髓重相关基因,本文对该QTL区域进行了精细定位。方法以高级互交系小鼠A/J×C57BL/6J(F4)为研究对象,选择脊髓重偏向两极的个体,在D15Mit158位点附近作高密度局部基因组扫描,用Map Manager QTX19软件对脊髓重与基因型进行连锁不平衡分析。结果在15号染色体D15Mit107附近出现了一个很强的连锁峰,LRS值为17.3(P=1.8×10-4),变异解释率为27%,LOD值达到3.75,可以认定为一主效QTL。该QTL跨度范围为3.2cM。另一个提示可能具有连锁关系的QTL位点在D15Mit28附近,LRS值为7.6(P=0.02),变异解释率为13%,跨度范围为5.0cM。结论控制小鼠脊髓重的D15Mit158区域实际上含有两个QTL,其中一个主效QTL位于15号染色体上宽约3.2cM的D15Mit107位点附近;另一个可能的QTL位于宽约5.0cM的D15Mit28附近。  相似文献   

5.
该研究利用油菜双单倍体株系(348份)群体和已构建的遗传连锁图谱,采用复合区间作图法,对2009~2013年连续5年的千粒重性状表型数据进行QTL初步定位和分析,结果共获得46个显著性千粒重QTL,主要分布在A7、C1和C6等11条染色体上;其中qTSW-09 DL11-1的表型变异最高(19.63%),qTSW-11 DL9的表型变异最小(2.73%)。通过元分析方法将所获得的46个QTL进行整合,结果显示:cqTSW-C1-2的表型变异最大(10.64%),并发现多个整合后的一致性QTL能够在连续多年试验中被检测到,其中cqTSW-C1-3连续5年被检测到,表明控制千粒重的QTL在种植环境中能够稳定表达;同时,新发现位于C1染色体上的千粒重主效QTL cqTSW-C1-2,解释表型变异达到10.64%。油菜千粒重性状的QTL分析和主效QTL的获得,为进一步实现油菜大籽粒的分子育种和高产新品种的培育提供了重要的理论指导。  相似文献   

6.
小麦早衰及其相关生理性状的QTL分析   总被引:1,自引:0,他引:1  
利用RIL群体及其分子标记遗传图谱,对小麦早衰指标和与早衰相关的6个生理性状进行了QTL定位分析。小麦早衰指标中,检测到2个籽柆饱满度的加性QTL,分别位于3A和3B染色体,可解释表型变异的9.62%和18.30%。生理性状中,共检测到可溶性蛋白含量、SOD活性和POD活性3个性状的5个加性QTL,涉及2A、2B、2D、4A和6B等5条染色体,可解释表型变异的8.1%~49.56%。这些QTL间不存在连锁关系。  相似文献   

7.
利用6044×01-35构建的重组自交系(RIL)群体为试验材料,对小麦粒重性状进行发育动态QTL分析。结果表明,在小麦花后子粒灌浆的7个不同时期,两个试验点共检测到16个与粒重性状相关的QTL。其中开花后20d检测到的单穗粒重QTL位于2A染色体上,解释率达12%,遗传效应超过10;两环境下控制千粒重QTL在7个时期均被检测到。花后的各个时期均能在Xgwm448-Xgpw7399标记区间定位到千粒重QTL。其中花后10d检测到1个千粒重QTL,位于2A染色体的Xgwm448-Xgpw7399标记区间,解释较大的表型变异,达到18%。Qtl8、Qtl13和Qtl14均定位在Xgwm448-Xgpw7399标记区间的同一位置,共同解释11%的表型变异。花后20d和花后25d均检测到1个QTL,位于2A染色体的Xgwm372-Xgwm95标记区间的不同位点,均能解释4%的表型变异。花后40d检测到1个QTL,位于1D染色体的Xwmc93-Xgpw2224标记区间,解释1%的表型变异。从连锁群的位置上看,控制千粒重的QTL主要集中在2A染色体的Xgwm448-Xgpw7399标记区间,这是一个控制千粒重QTL的富集区域,以期进行精细定位和图位克隆。  相似文献   

8.
猪胴体脂肪沉积性状的QTL定位   总被引:15,自引:2,他引:13  
市场生猪价格的决定因素之一是背膘厚度,因此,对养猪行业来说,确认影响这一性状的基因组区域就显得非常必要,1998年,由大白和梅山猪杂交繁殖的资源家系,随机选留81头F2,全部屠宰,用48个微卫星标记进行1-4,6-7号染色体(SSC)的扫描,用线性模型最小二乘法对胴体脂肪性状进行区间作图,除SSC2外,其余5条染色体共有14个QTL影响脂肪沉积,其中SSC7上4个QTL有印记效应存在,平均背膘厚QTL定位于SSC1,4和7,SSC4平均背膘厚QTL达染色体极显著水平(P<0.01),SSC1和7上平均背膘厚STL与多个文献报道结果一致,可能是家猪中普遍存在的QTL,花油率QTL定位于SSC6,内脂率QTL定位于SSC7,肥肉率等其他4项脂肪性状定位在SSC3,4和7。  相似文献   

9.
猪重要胴体性状的遗传定位   总被引:1,自引:0,他引:1  
苏玉虹  马宝钰  熊远著 《遗传》2004,26(2):163-166
为了寻找影响猪重要胴体性状主基因在染色体的位置,我们以大白猪和梅山猪为父母本建立了F2资源家系。随机选留81头F2代个体,经屠宰获得猪胴体性状数据。结合家系个体的48个微卫星标记基因型,用线性模型最小二乘法对各胴体性状进行数量性状基因座(QTL)的区间定位。定位结果表明位于猪染色体(SSC)4号的瘦肉率和瘦肉量QTL达到基因组极显著水平;SSC1、2和4上眼肌面积QTL达到染色体显著水平;位于SSC1和4上的眼肌高度QTL与眼肌面积QTL在同一染色体区域;而眼肌宽度QTL位于SSC6;位于SSC7同一标记区间的皮重、皮率、骨重和骨率QTL表现出很好的一致性,均达到染色体显著水平。SSC6和7的体长QTL达到染色体显著水平。 Abstract: To detect quantitative trait loci (QTL) for body composition traits in pigs, a resource family with three-generation was developed by using Large White grand sires and Meishan grand dams. A total of 81 F2 progenies were phenotyped for body composition. All animals were genotyped for microsatellite markers. The main results are as follows:, the strongest linkages at genome-wise level of lean meat percentage and total meat content were detected on SSC1 and 4. QTLs for loin eye area were located on SSC1, 2 and 4, QTLs for loin eye height on SSC 1 and 4, and QTLs for loin eye width on SSC 6. The best positions estimated for QTLs of skin percentage and of skin weight were in the same marker interval. Two QTLs significant at genome-wise level or highly significant at chromosome-wide level for carcass length were located on SSC6 and 7.  相似文献   

10.
以‘马贵荔'ב焦核三月红'76株F_1代群体为试材,检测了酒石酸、苹果酸、蔗糖含量和单果重4个果实性状分离的情况。结果表明,4个性状表现为连续分布,具有数量性状的典型特征,与4个果实性状连锁的QTL位点23个,其中控制酒石酸的QTL为2个,控制苹果酸的QTL为4个,控制蔗糖的QTL为12个和控制单果重的QTL为5个。各QTL的LOD值在3.15~5.61之间,可解释13.85%~88.3%的表型变异。  相似文献   

11.
Carcass and meat quality traits are economically important in pigs. In this study, 17 carcass composition traits and 23 meat quality traits were recorded in 1028 F2 animals from a White Duroc × Erhualian resource population. All pigs in this experimental population were genotyped for 194 informative markers covering the entire porcine genome. Seventy-seven genome-wide significant quantitative trait loci (QTL) for carcass traits and 68 for meat quality were mapped to 34 genomic regions. These results not only confirmed many previously reported QTL but also revealed novel regions associated with the measured traits. For carcass traits, the most prominent QTL was identified for carcass length and head weight at 57 cM on SSC7, which explained up to 50% of the phenotypic variance and had a 95% confidence interval of only 3 cM. Moreover, QTL for kidney and spleen weight and lengths of cervical vertebrae were reported for the first time in pigs. For meat quality traits, two significant QTL on SSC5 and X were identified for both intramuscular fat content and marbling score in the longissimus muscle, while three significant QTL on SSC1 and SSC9 were found exclusively for IMF. Both LM and the semimembranous muscle showed common QTL for colour score on SSC4, 5, 7, 8, 13 and X and discordant QTL on other chromosomes. White Duroc alleles at a majority of QTL detected were favourable for carcass composition, while favourable QTL alleles for meat quality originated from both White Duroc and Erhualian.  相似文献   

12.
To detect quantitative trait loci (QTL) that influence economically important traits in a purebred Japanese Black cattle population, we performed a preliminary genome-wide scan using 187 microsatellite markers across a paternal half-sib family composed of 258 offspring. We located six QTL at the 1% chromosome-wise level on bovine chromosomes (BTA) 4, 6, 13, 14 and 21. A second screen of these six QTL regions using 138 additional paternal offspring half-sib from the same sire, provided further support for five QTL: carcass weight on BTA14 (22-39 cM), one for rib thickness on BTA6 (27-58 cM) and three for beef marbling score (BMS) on BTA4 (59-67 cM), BTA6 (68-89 cM) and BTA21 (75-84 cM). The location of QTL for subcutaneous fat thickness on BTA13 was not supported by the second screen (P > 0.05). We determined that the combined contribution of the three QTLs for BMS was 10.1% of the total variance. The combined phenotypic average of these three Q was significantly different (P < 0.001) from those of other allele combinations. Analysis of additional half-sib families will be necessary to confirm these QTL.  相似文献   

13.
We performed a whole‐genome scan with 110 informative microsatellites in a commercial Duroc population for which growth, fatness, carcass and meat quality phenotypes were available. Importantly, meat quality traits were recorded in two different muscles, that is, gluteus medius (GM) and longissimus thoracis et lumborum (LTL), to find out whether these traits are determined by muscle‐specific genetic factors. At the whole‐population level, three genome‐wide QTL were identified for carcass weight (SSC7, 60 cM), meat redness (SSC13, 84 cM) and yellowness (SSC15, 108 cM). Within‐family analyses allowed us to detect genome‐wide significant QTL for muscle loin depth between the 3rd and 4th ribs (SSC15, 54 cM), backfat thickness (BFT) in vivo (SSC10, 58 cM), ham weight (SSC9, 69 cM), carcass weight (SSC7, 60 cM; SSC9, 68 cM), BFT on the last rib (SSC11, 48 cM) and GM redness (SSC8, 85 cM; SSC13, 84 cM). Interestingly, there was low positional concordance between meat quality QTL maps obtained for GM and LTL. As a matter of fact, the three genome‐wide significant QTL for colour traits (SSC8, SSC13 and SSC15) that we detected in our study were all GM specific. This result suggests that QTL effects might be modulated to a certain extent by genetic and environmental factors linked to muscle function and anatomical location.  相似文献   

14.
A quantitative trait locus (QTL) analysis of carcass composition data from a three-generation experimental cross between Meishan (MS) and Large White (LW) pig breeds is presented. A total of 488 F2 males issued from six F1 boars and 23 F1 sows, the progeny of six LW boars and six MS sows, were slaughtered at approximately 80 kg live weight and were submitted to a standardised cutting of the carcass. Fifteen traits, i.e. dressing percentage, loin, ham, shoulder, belly, backfat, leaf fat, feet and head weights, two backfat thickness and one muscle depth measurements, ham + loin and back + leaf fat percentages and estimated carcass lean content were analysed. Animals were typed for a total of 137 markers covering the entire porcine genome. Analyses were performed using a line-cross (LC) regression method where founder lines were assumed to be fixed for different QTL alleles and a half/full sib (HFS) maximum likelihood method where allele substitution effects were estimated within each half-/full-sib family. Additional analyses were performed to search for multiple linked QTL and imprinting effects. Significant gene effects were evidenced for both leanness and fatness traits in the telomeric regions of SSC 1q and SSC 2p, on SSC 4, SSC 7 and SSC X. Additional significant QTL were identified for ham weight on SSC 5, for head weight on SSC 1 and SSC 7, for feet weight on SSC 7 and for dressing percentage on SSC X. LW alleles were associated with a higher lean content and a lower fat content of the carcass, except for the fatness trait on SSC 7. Suggestive evidence of linked QTL on SSC 7 and of imprinting effects on SSC 6, SSC 7, SSC 9 and SSC 17 were also obtained.  相似文献   

15.
A three-generation full-sib resource family was constructed by crossing two commercial pig lines. Genotypes for 37 molecular markers covering chromosomes SSC1, SSC6, SSC7 and SSC13 were obtained for 315 F2 animals of 49 families and their parents and grandparents. Phenotypic records of traits including carcass characteristics measured by the AutoFOM grading system, dissected carcass cuts and meat quality characteristics were recorded at 140 kg slaughter weight. Furthermore, phenotypic records on live animals were obtained for chemical composition of the empty body, protein and lipid accretion (determined by the deuterium dilution technique), daily gain and feed intake during the course of growth from 30 to 140 kg body weight. Quantitative trait loci (QTL) detection was conducted using least-squares regression interval mapping. Highest significance at the 0.1% chromosome-wise level was obtained for five QTL: AutoFOM belly weight on SSC1; ham lean-meat weight, percentage of fat of primal cuts and daily feed intake between 60 and 90 kg live weight on SSC6; and loin lean-meat weight on SSC13. QTL affecting daily gain and protein accretion were found on SSC1 in the same region. QTL for protein and lipid content of empty body at 60 kg liveweight were located close to the ryanodine receptor 1 (RYR1) locus on SSC6. On SSC13, significant QTL for protein accretion and feed conversion ratio were detected during growth from 60 to 90 kg. In general, additive genetic effects of alleles originating from the Piétrain line were associated with lower fatness and larger muscularity as well as lower daily gain and lower protein accretion rates. Most of the QTL for carcass characteristics were found on SSC6 and were estimated after adjustment for the RYR1 gene. QTL for carcass traits, fatness and growth on SSC7 reported in the literature, mainly detected in crosses of commercial lines x obese breeds, were not obtained in the present study using crosses of only commercial lines, suggesting that these QTL are not segregating in the analysed commercial lines.  相似文献   

16.
We performed a genome-wide QTL scan for production traits in a line cross between Duroc and Pietrain breeds of pigs, which included 585 F(2) progeny produced from 31 full-sib families genotyped with 106 informative microsatellites. A linkage map covering all 18 autosomes and spanning 1987 Kosambi cM was constructed. Thirty-five phenotypic traits including body weight, growth, carcass composition and meat quality traits were analysed using least square regression interval mapping. Twenty-four QTL exceeded the genome-wide significance threshold, while 47 QTL reached the suggestive threshold. These QTL were located at 28 genomic regions on 16 autosomal chromosomes and QTL in 11 regions were significant at the genome-wide level. A QTL affecting pH value in loin was detected on SSC1 between marker-interval S0312-S0113 with strong statistical support (P < 3.0 x 10(-14)); this QTL was also associated with meat colour and conductivity. QTL for carcass composition and average daily gain was also found on SSC1, suggesting multiple QTL. Seventeen genomic segments had only a single QTL that reached at least suggestive significance. Forty QTL exhibited additive inheritance whereas 31 QTL showed (over-) dominance effects. Two QTL for trait backfat thickness were detected on SSC2; a significant paternal effect was found for a QTL in the IGF2 region while another QTL in the middle of SSC2 showed Mendelian expression.  相似文献   

17.
J. Ma  W. Qi  D. Ren  Y. Duan  R. Qiao  Y. Guo  Z. Yang  L. Li  D. Milan  J. Ren  L. Huang 《Animal genetics》2009,40(4):463-467
Chinese Erhualian pigs have larger and floppier ears compared with White Duroc pigs (small, half- or fully-pricked ears). To identify quantitative trait loci (QTL) for ear weight and area as well as erectness, a genome-wide scan with 194 microsatellites was performed in a White Duroc × Chinese Erhualian resource population (>1000 F2 animals). Twenty-three genome-wide significant QTL and 12 suggestive QTL were identified. All QTL for ear erectness and size detected in two previous studies, bar two on SSC6 and 9, were confirmed here. The 1% genome-wide significant QTL at 70 cM on SSC5 and at 58 cM on SSC7 have profound and pleiotropic effects on the three ear traits, with Erhualian alleles increasing weight and area but decreasing erectness. Notably, the 95% confidence interval of the QTL for weight and area on SSC7 spanned only 3 cM. New QTL reaching 1% genome-wide significance were found on SSC8 (at 37 cM) for all three ear traits, on SSC4 and 16 for weight and area, and on SSCX for area. Unexpectedly, Erhualian alleles at these loci were associated with lighter and smaller or erect ear. Some new suggestive QTL were also found on other chromosome regions. Almost all the QTL for weight and area had essentially additive effects, while the QTL for erectness on SSC2, 5 and 7 showed not only additive effects but also partial dominance effects of Erhualian alleles. The two most significant QTL on SSC7 and SSC5 could be promising targets for fine mapping and identification of the causative mutations.  相似文献   

18.
Gao Y  Feng CG  Song C  Du ZQ  Deng XM  Li N  Hu XX 《Animal genetics》2011,42(6):670-674
Body size traits reflect the condition of body development, are always mentioned when a breed is described, and are also targets in breeding programmes. In chicken, there are several reports focused on body size traits, such as shank length, tibia length or bone traits. However, no study was carried out on chest width (CW), chest depth (CD), body slope length (BL) and head width (HW) traits. In this study, genome scans were conducted on an F2 resource population (238 F2 individuals from 15 full‐sib families derived from an intercross of the White Plymouth Rock with the Silkies Fowl) to identify quantitative trait loci (QTL) associated with CW, CD, BL and HW from 7 to 12 weeks of age. In total, 21 significant or suggestive QTL were found that affected four body size traits. Four QTL reached 1% genome‐wide significance level: at 297 cM on GGA3 (associated with CW at 9 weeks of age), between 155 and 184 cM on GGA1 (affecting BL traits at 9 and 10 weeks of age), at 22 cM on GGA2 (related with BL traits at 12 weeks of age) and at 36 cM on GGA1 (for HW trait at 8 weeks of age).  相似文献   

19.
A quantitative trait locus (QTL) analysis of female reproductive data from a three-generation experimental cross between Meishan (MS) and Large White (LW) pig breeds is presented. Six F1 boars and 23 F1 sows, progeny of six LW boars and six MS sows, produced 573 F2 females and 530 F2 males. Six traits, i.e. teat number (TN), age at puberty (AP), ovulation rate (OR), weight at mating (WTM), number of viable embryos (NVE) and embryo survival (ES) at 30 days of gestation were analysed. Animals were genotyped for a total of 137 markers covering the entire porcine genome. Analyses were carried out based on interval mapping methods, using a line-cross (LC) regression and a half-full sib (HFS) maximum likelihood test. Genome-wide (GW) highly significant (P < 0.001) QTL were detected for WTM on SSC 7 and for AP on SSC 13. They explained, respectively, 14.5% and 8.9% of the trait phenotypic variance. Other GW significant (P < 0.05) QTL were detected for TN on SSC 3, 7, 8, 16 and 17, for OR on SSC 4 and 5, and for ES on SSC 9. Two additional chromosome-wide significant (P < 0.05) QTL were detected for TN, three for WTM, four for AP, three for OR, three for NVE and two for ES. With the exception of the two above-mentioned loci, the QTL explained from 1.2% to 4.6% of trait phenotypic variance. QTL alleles were in most cases not fixed in the grand-parental populations and Meishan alleles were not systematically associated with higher reproductive performance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号