首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
为了阐明李果实有机酸组成特征及其与苹果酸转运体基因PsALMT9、PstDT的相关性,该研究以‘皇冠李’(Prunus salicina ‘Huangguan’)和‘黑琥珀李’(Prunus salicina ‘Black Amber’)为试材,测定了不同发育阶段果实有机酸组分与含量、可滴定酸含量、pH、单果重,采用实时荧光定量PCR(qPCR)分析了苹果酸转运体基因PsALMT9和PstDT在果实生长发育过程中的表达变化规律,并通过Pearson相关系数探讨PsALMT9和PstDT基因与果实有机酸的相关性。结果显示:(1)‘皇冠李’和‘黑琥珀李’果实各发育阶段主要有机酸组分为苹果酸(占73.83%~92.10%),其次为酒石酸(占4.59%~14.26%),柠檬酸、草酸、乙酸和琥珀酸含量较低(0.47%~7.21%),富马酸仅以微量存在。(2)果实苹果酸含量与可滴定酸含量呈极显著正相关关系,与pH呈极显著负相关关系;PsALMT9表达量与酒石酸含量呈显著正相关关系,与乙酸和草酸含量呈极显著正相关关系;PstDT表达量与柠檬酸、可滴定酸含量呈显著正相关关系,但PsALMT9和PstDT均与苹果酸含量的相关性较低。研究发现,‘皇冠李’和‘黑琥珀李’属于苹果酸型果实,果实酸度主要由苹果酸决定;PsALMT9基因可能同时参与酒石酸、乙酸和草酸的跨液泡膜转运,PstDT基因可能参与柠檬酸的跨液泡膜转运,而苹果酸跨液泡膜转运过程可能与PsALMT9、PstDT等多种膜蛋白基因的协同调控有关。  相似文献   

2.
以国内14个山桐子居群为研究对象,采用方差分析、相关性分析、聚类分析和主成分分析等方法,探究山桐子果实表型性状变异及其与环境因子的关系。结果表明:(1)山桐子的9个果实表型性状在居群间和居群内均有广泛变异,居群间各表型性状的变异系数为6.47%—32.51%,居群内各表型性状的变异系数为4.69%—35.21%。单串果穗重和单串果实重的变异系数较大,单果横径、单果纵径及单果重的变异系数均较小。河南农业大学林木种苗繁育工程技术中心居群表型变异最丰富,四川省方山村居群最小。山桐子果穗表型性状与果实产量性状呈显著正相关,通过聚类分析可将山桐子14个居群分为4个类群,类群Ⅳ中山桐子果实表型性状最为优良,果穗大、单果重,表现出突出的育种优势。(2)山桐子14个居群地土壤pH在5.36—8.49范围内,多数居群土壤为酸性,土壤有效氮、有效磷、有效钾含量低。(3)环境因子中全氮对山桐子果实表型性状影响较大,土壤pH、有效磷含量与果实表型性状存在显著相关性。山桐子果实表型性状存在丰富变异,果穗外形对其产量有着显著影响;土壤pH及有效磷含量是影响山桐子果实表型性状的主要土壤养分因子,在生产中或可通过调节...  相似文献   

3.
直播条件下水稻6个穗部性状的QTL分析   总被引:2,自引:0,他引:2  
在大田直播条件下,利用来源于"Lemont/特青"的重组自交系群体,对水稻6个穗部性状及其相互间遗传相关的分子基础进行了QTL分析,共检测到19个QTL,各性状QTL数为2~4个,单个QTL贡献率为4%~22%。共检测到3个染色体区段能同时影响多个穗部性状,其中第1染色体RM212-RM104和第2染色体RM263-RM221区段的QTL能同时影响单株产量、每穗颖花数、着粒密度和二次枝梗数中的3个或4个性状,且这2个区段的QTL对各性状的效应方向相同,增效等位基因均来自‘特青’,为各性状间表型正相关提供了重要的遗传解释。第11染色体RG1022附近的QTL对着粒密度的效应值为负,来自‘特青’的等位基因增加性状值,而对穗长的效应值为正,来自‘特青’的等位基因降低性状值,为这2个性状间表型负相关也提供了一定的遗传解释。此外,对水稻穗部性状QTL在多种环境和遗传背景下的稳定表达及其在分子标记辅助育种中的应用进行了讨论。  相似文献   

4.
南方高丛蓝浆果‘南月’实生后代果实特性的变异分析   总被引:4,自引:0,他引:4  
对南方高丛蓝浆果(Vaccinium corymbosum hybrids)品种‘南月’(‘Southmoon’)实生后代的单果质量、果实横径、可溶性固形物含量、单果种子数、果色、口感以及蒂痕类型等果实特征的变异进行了分析。结果表明,‘南月’实生后代的单果质量为0.64~2.15g,果实横径为10.0~16.4mm;果实可溶性固形物含量为9.1%-15.8%,其中有37%的单株果实可溶性固形物含量在12.0%以上;单果种子数为3~93粒,有18%的单株单果种子数小于25粒;果实颜色以蓝紫色和黑蓝紫色为主,比例分别为50%和42%;果实口感以中等和好2个等级为主,比例分别为50%和40%。在对果实的主要特征和经济性状进行评估的基础上,初步筛选出21个‘南月’实生后代优良单株。  相似文献   

5.
研究典型籼稻品种‘七山占’和典型粳稻品种‘秋光’杂交衍生的重组自交系群体及其双亲的花时性状,并用该群体的分子连锁图谱进行QTL分析,共检测到6个与水稻花时性状相关的QTL,包括1个始花时QTL、3个盛花时QTL和2个终花时QTL,分别位于第1、2、7、8、10和12染色体,单个QTL的贡献率在7.08%~26.95%之间。有4个增效等位基因来源于粳型亲本‘秋光’,2个来源于籼型亲本‘七山占’。  相似文献   

6.
小麦幼苗耐热性的QTL定位分析   总被引:7,自引:0,他引:7       下载免费PDF全文
以小麦DH群体(‘旱选10号’ב鲁麦14’)为材料,在高温(热胁迫)及常温(对照)两种条件下考察小麦幼苗的根干重、苗干重、幼苗生物量、叶片叶绿素含量、叶绿素荧光参数及其耐热指数,并应用基于混合线性模型的复合区间作图法分析幼苗性状及其耐热指数QTL的数量、染色体分布及表达情况,以及QTL与环境的互作效应。结果显示:(1)亲本‘旱选10号’的耐热性明显优于‘鲁麦14’,且杂交后代的耐热性出现超亲分离。(2)控制幼苗耐热相关性状的QTL位点在染色体2D、6B、3A、4A、5A和7A上分布较多,而控制幼苗性状耐热指数的QTL在染色体6A、6B、3A、2D、5A和7A上分布较多,QTL位点在染色体上的分布有区域化的趋势。(3)控制幼苗性状的单个加性QTL和上位性QTL解释的表型变异分别平均为2.48%和2.65%;而控制耐热指数的单个加性QTL和上位性QTL解释的表型变异分别平均为8.84%和1.98%。(4)在热胁迫和对照条件下共检测到与幼苗性状及其耐热指数有关的加性效应QTL 13个和上位性效应QTL 28对,分布在除4D和6D以外的19条染色体上。研究表明,控制幼苗性状的QTL以上位性效应为主,而其耐热指数的QTL以加性效应为主。  相似文献   

7.
增施钾肥对大棚蟠桃品质及营养生长的影响   总被引:4,自引:0,他引:4  
该研究以蟠桃品种‘金霞蟠桃’和‘玉霞蟠桃’为试材,分别在2个品种成熟前3周(3W)、2周(2W)和1周(1W)每树环施钾肥(K2O)1 000g,比较不同时期施肥处理蟠桃果实外观品质、内在品质以及营养生长的变化。结果表明:(1)在蟠桃果实成熟前2W和3W尤其是2W施用钾肥,蟠桃果实单果重和体积总体较大,‘金霞蟠桃’2W处理果实单果重、横径和侧径分别显著高于1W处理11.48%、3.51%和3.03%,‘玉霞蟠桃’2W处理则分别显著高于1W处理56.86%、14.97%和3.67%;(2)不同时期增施钾肥对‘玉霞蟠桃’果实颜色的变化影响总体较小,‘金霞蟠桃’2W和3W处理果实的a*值分别显著高于1W处理55.02%和44.49%,但2W和3W处理之间差异不显著;(3)增施钾肥后,2个蟠桃品种果实可溶性固形物含量、蔗糖含量从高到低依次为2W3W1W,可溶性糖总量大小也依次为2W3W1W,但2W和3W处理间差异不显著;不同时期增施钾肥对2个蟠桃品种果实有机酸总量和枝叶营养生长总体影响不大。研究认为,在蟠桃果实成熟前2周左右施用钾肥,成熟时果实体积、单果重增大,果肉可溶性固形物、蔗糖、可溶性总糖含量以及糖酸比高,果实综合品质得到有效改善,但增施钾肥过早或过晚都无法达到最佳效果。  相似文献   

8.
辣椒果实性状主基因+多基因遗传分析   总被引:3,自引:0,他引:3       下载免费PDF全文
以果实性状差异较大的一年生辣椒材料C.annuum B9431(P1)和灌木辣椒材料C.frutescens H108(P2)为亲本,构建4世代群体(P1、P2、F1、F2),应用数量性状主基因+多基因混合遗传模型方法对辣椒6个果实性状进行遗传分析,为辣椒果实性状QTL定位及分子标记辅助育种研究奠定理论基础。结果表明:6个果实性状均符合2对主基因+多基因遗传模型。其中,单果重量、果实纵径、果实横径、果形指数和果肉厚度5个性状均符合E-0模型,即2对加性-显性-上位性主基因+加性-显性-上位性多基因混合遗传模型;果柄长度最佳遗传模型为E-5,即2对完全显性主基因+加性-显性多基因模型。单果重量、果实纵径、果实横径、果形指数、果肉厚度和果柄长度主基因遗传率分别为87.64%、37.67%、82.46%、94.82%、83.33%和40.00%,多基因遗传率分别为7.50%、54.56%、10.53%、0.27%、12.96%和37.78%。  相似文献   

9.
分析水稻品种‘沈农265’和‘丽江新团黑谷’杂交的F2群体基部第二节间茎秆机械强度与该节间形态和茎秆解剖结构的相关性,并对基部第二节间机械强度和相关性状进行QTL定位的结果表明:机械强度与茎粗、茎壁面积、茎壁厚度、大小维管束数目、大小维管束面积、大小维管束韧皮部面积、大小维管束木质部面积呈显著或极显著的正相关,与节间长度呈极显著的负相关,而与茎秆扁平率的相关不显著。采用复合区间作图,从研究的14个目标性状中检测到18个QTL。控制基部第二节间的抗折力的QTL检测到4个,位于第4、7、9和10号染色体上,可解释遗传变异的12%~23%。在第4和第7染色体上的相同区间上还同时检测到了控制茎壁性状和维管束性状QTL,贡献率在12%~21%之间。说明这两个位点是控制基部第二节间机械强度的重要区域,也是茎壁性状、维管束性状与机械强度高度正相关的遗传学基础。  相似文献   

10.
为进行星油藤(Plukenetia volubilis L.)良种选育,对其蒴果和种子的性状变异进行了研究。结果表明,星油藤蒴果中4、5、6裂片果分别为49.71%、37.69%和12.60%,以4和5裂片为主;种子性状变异系数比果实的小,种子性状比果实更稳定。按果裂片类型统计,以4裂片的性状变异系数最小,性状也较为稳定,性状分化变异率有54.19%~95.63%来自蒴果间,而果实和种子性状分化变异率分别有79.81%~95.76%和67.66%~93.0%来源于裂片类型,性状分化变异受裂片数影响大,而相同裂片数不同蒴果间的变异程度低。不同裂片类型的果实与种子大多数性状间均存在显著或极显著差异,果裂数是造成性状差异的主要原因。种子萌发率以6裂片果5裂片果4裂片果,平均萌发率超过91%;种子萌发率与单果重、单果重与果形态指标、种子重与种子形态性状间均存在极显著正相关关系,其中单果重对果厚、种子重对种子宽的影响大于其它性状。综合分析星油藤以4裂片果的生物产量最高,平均果重和种子重均好于其他类型。  相似文献   

11.
Negative correlations between quality traits and fruit size may hamper the breeding of fresh market tomato varieties for better organoleptic qualities. In a recent QTL analysis, QTLs with large effects on fruit weight, locule number and several quality traits were detected in the distal 50 cM of chromosome 2, but favorable alleles for fruit weight and locule number were unfavorable to quality traits. Substitution mapping was undertaken to determine whether the effects were due to a single QTL or to several tightly linked QTLs. Several chromosomal segments were characterized using near-isogenic lines. Five of them appeared to be involved in one or several traits. Considering the five segments from the top to the bottom of the region, the QTLs detected in each segment controlled the variation of: (1) fruit weight, (2) soluble solids content and dry matter weight, (3) fruit weight, (4) locule number and (5) fruit weight, dry matter weight, total sugars, titratable acidity and soluble solids content. This last cluster illustrates an antagonism between fruit weight and four quality traits, as favorable alleles are not conferred by the same parent in both cases. Nevertheless, several antagonistic QTLs were separated from each other in the first four segments, holding the promise for marker-assisted improvement of fruit quality traits without compromising the fruit size.  相似文献   

12.
Sweet melon cultivars contain a low level of organic acids and, therefore, the quality and flavor of sweet melon fruit is determined almost exclusively by fruit sugar content. However, genetic variability for fruit acid levels in the Cucumis melo species exists and sour fruit accessions are characterized by acidic fruit pH of <5, compared to the sweet cultivars that are generally characterized by mature fruit pH values of >6. In this paper, we report results from a mapping population based on recombinant inbred lines (RILs) derived from the cross between the non-sour 'Dulce' variety and the sour PI 414323 accession. Results show that a single major QTL for pH co-localizes with major QTLs for the two predominant organic acids in melon fruit, citric and malic, together with an additional metabolite which we identified as uridine. While the acidic recombinants were characterized by higher citric and malic acid levels, the non-acidic recombinants had a higher uridine content than did the acidic recombinants. Additional minor QTLs for pH, citric acid and malic acid were also identified and for these the increased acidity was unexpectedly contributed by the non-sour parent. To test for co-localization of these QTLs with genes encoding organic acid metabolism and transport, we mapped the genes encoding structural enzymes and proteins involved in organic acid metabolism, transport and vacuolar H+ pumps. None of these genes co-localized with the major pH QTL, indicating that the gene determining melon fruit pH is not one of the candidate genes encoding this primary metabolic pathway. Linked markers were tested in two additional inter-varietal populations and shown to be linked to the pH trait. The presence of the same QTL in such diverse segregating populations suggests that the trait is determined throughout the species by variability in the same gene and is indicative of a major role of the evolution of this gene in determining the important domestication trait of fruit acidity within the species.  相似文献   

13.
 The organoleptic quality of fleshy fruits is in a large part defined by their composition of soluble sugars and organic acids. An F2 population issuing from a cross between two peach varieties, ‘Ferjalou Jalousia’, a non-acid peach, and ‘Fantasia’, an acid nectarine, was analysed over 2 successive years for agronomic characters and for molecular-marker (isoenzymes, RFLPs, RAPDs, IMAs and AFLPs) segregations. Blooming and maturity dates, as well as productivity, were noted for each tree. Four fruits per tree were analysed at maturity for fresh weight, colour, pH, titratable acidity, soluble-solids content (SSC), acid (malic, citric and quinic acids) and sugar (sucrose, glucose, fructose, sorbitol) contents. QTLs were detected for all fruit components analysed, except for fruit colour. The QTLs for nearly all components were present on two linkage groups. For productivity, fresh weight, pH, quinic acid, sucrose and sorbitol content, all the detected QTLs displayed the same effect as the parental phenotypes. By contrast, for maturity date, titratable acidity, malic and citric acids and fructose, some QTLs displayed the same effect as the parental phenotypes while others displayed the opposite effect. The fraction of the total variation in each trait throughout the population explained by the QTLs was very high and reached more than 90% for some characters. For most of the characters analysed, epistasis was observed between QTLs. Received: 10 October 1997 / Accepted: 18 August 1998  相似文献   

14.
Association mapping is an attractive method to identify QTLs in perennial horticultural crops such as citrus, as it does not need a designed cross between parental genotypes and can save time and labor to construct a segregating population. It usually requires more genetic markers than linkage-based QTL mapping owing to a lower degree of linkage disequilibrium (LD). However, recent advances in next-generation sequencing offer high-throughput, cost-effective methods, including genotyping-by-sequencing (GBS), for genotyping massive amounts of single nucleotide polymorphisms (SNPs). In this study, we performed a genome-wide association study (GWAS) of fruit-quality traits in citrus using SNPs obtained by GBS. We evaluated 110 citrus accessions, including landraces, modern cultivars, and breeding lines, for eight fruit-quality traits (fruit weight, fruit skin color, fruit surface texture, peelability, pulp firmness, segment firmness, sugar content, and acid content) during 2005 to 2012 (except 2007). GBS found 2309 SNPs, which we anchored to the clementine reference genome. We evaluated LD in the 110 accessions and confirmed that GBS gave enough SNPs to conduct GWAS. We identified seven QTLs, including four novel ones, comprising four significant QTLs for fruit weight and one QTL each for fruit skin color, pulp firmness, and segment firmness. These QTLs offer promise for use in citrus crossbreeding.  相似文献   

15.
Twelve important pomological traits related to fruit quality were studied during 3 years in an F1 apricot progeny of 160 seedlings derived from a cross between the Spanish selection ‘Z701-1’ and the South African cultivar ‘Palsteyn’. Results indicated quantitative transmission of most of the fruit quality traits studied. In addition, a clear influence of the genetic background of parents was observed. In some seedlings, values outside the range of the parent were observed due to the influence of this genetic background. No correlations were found among most agronomic traits in apricot during the 3 years of the study. However, high correlations between years were described for most of the evaluated traits, and the environment had limited influence on the expression of the trait. A genetic map was developed using 41 apricot and peach SSR markers. The map obtained showed eight linkage groups (corresponding to the eight chromosomes) covering a total distance of 369.3 cM and an average distance between markers of 9 cM. Fifty-four QTLs associated with different traits were identified, including: blooming date (linkage groups G1, G4 and G7); ripening time (G4 and G6); fruit development (G4 and G6); fruit weight (G1 and G4); stone weight (G1 and G7); flesh color (G1 and G6); pH (G1, G2 and G4); malic acid (G1, G2 and G4); and soluble solids content (G4 and G5). We have highlighted several QTLs in G4 that explain the variability in various traits related to fruit quality such as blooming date, ripening time, and soluble solids content. In addition, we have also highlighted an important QTL on G2 that explains much of the variation in levels of acidity.  相似文献   

16.
紫色小白菜有机酸的提取优化及UPLC定量分析   总被引:1,自引:0,他引:1  
为建立一种紫色小白菜中精准的有机酸提取及定性定量分析方法。本研究在单因素试验的基础上,采用Box-Behnken的中心组合试验设计原理,设计响应面试验优化紫色小白菜有机酸的提取工艺。结果表明,紫色小白菜有机酸提取的最优工艺参数为:乙醇浓度73%,料液比1∶21,超声时间11 min,超声温度70℃。通过超高效液相色谱法(ultra performance liquid chromatography,UPLC)对紫色小白菜叶片和叶柄部位有机酸进行定性定量分析,检测出苹果酸、柠檬酸、丙二酸、琥珀酸和酒石酸,其中苹果酸含量最高,分别为15.968、5.019 mg/g;其次为柠檬酸,分别为9.293、1.385 mg/g。定性定量结果表明,紫色小白菜叶片及叶柄部位含有丰富有机酸类物质,叶片部位苹果酸、柠檬酸、丙二酸、酒石酸含量均高于叶柄部位,而琥珀酸含量较低。  相似文献   

17.
The objectives of the present research were to determine the effects of water stress on seed-quality traits and to map QTLs controlling the studied traits under two different water treatments in a population of sunflower recombinant inbred lines (RILs). Two experiments were conducted in greenhouse and field conditions, each with well-watered and water-stressed treatments. The experiments consisted of a split-plot design (water treatment and RIL) with three blocks. Analyses of variance showed significant variation among genotypes, and a water treatment x genotype interaction was also observed for most of the traits. Two to 15 QTLs were found, depending on trait and growth conditions, and the percentage of phenotypic variance explained by the QTLs ranged from 5% to 31%. Several QTLs for oil content overlapped with QTLs for palmitic and stearic acid contents in all four conditions. An overlapping region on linkage group 3 (QTLs 2.OC.3.1 and 4.SA.3.1) was linked to an SSR marker (ORS657). A principal component analysis was performed on four fatty acid traits. Two principal components, P1 and P2, were used for QTL analysis. This method improved the ability to identify chromosomal regions affecting the fatty acids. We also detected the principal-component QTLs that did not overlap with the fatty acid QTLs. The results highlight genomic regions of interest in marker-based breeding programmes for increasing oil content in sunflower.  相似文献   

18.
Jia JZ  Tian LP  Xue L  Wei YN 《遗传》2010,32(10):1077-1083
利用TD22×HT-1-1-1-1组合产生的206个F2:3家系进行番茄可溶性固形物及相关性状的动态QTL定位,并对3个时期的可溶性固形物与果重、果型指数、可溶性糖、VC及有机酸进行相关性分析.结果表明在番茄果实发育的3个时期可溶性固形物的QTL位点存在差异,绿熟期和红熟期分别检测到4个、8个QTL位点,呈现动态变化,两个时期同时检测到LEαat006和Tomato|TC162363两个标记,对辅助选择育种有重要意义.研究发现3个时期可溶性固形物存在极显著差异,不同时期可溶性固形物的主要相关性状不同.绿熟期与可洛性糖呈显著正相关,与果重呈显著负相关;黄熟期与可溶性糖和有机酸呈显著正相关;红熟期与可溶性糖和有机酸呈显著正相关,与果重呈显著负相关.在各性状相关性分析的基础上建立线性回归模型,利用非参品种进行检验,拟合度达到95%以上.  相似文献   

19.
Improving organoleptic quality is an important but complex goal for fresh market tomato breeders. A total of 26 traits involved in organoleptic quality variation were evaluated, in order to understand the genetic control of this characteristic. A recombinant inbred line (RIL) population was developed from an intraspecific cross between a cherry tomato line with a good overall aroma intensity and an inbred line with a common taste but with bigger fruits. Physical traits included fruit weight, diameter, color (L,a,b), firmness and elasticity. Chemical traits were dry matter weight, titratable acidity, pH, and the contents of soluble solids, sugars, lycopene, carotene and 12 aroma volatiles. RILs showed a large range of variation for most of the traits and many of them were transgressive. Some correlations between aroma volatiles were in accordance with the metabolic pathway they originated from. A total of 81 significant QTLs were detected for the 26 traits by simple and composite interval mapping. They were mainly distributed in a few regions on chromosomes 2, 3, 4, 8, 9, 11 and 12. Major QTLs (R2>30%) were detected for fruit weight, diameter, and color, and for six aroma volatiles. Co-localization of QTLs controlling correlated traits was mainly found on chromosome 2. QTLs for fruit weight and sugar content or dry matter weight were often co-localized. However, a QTL for soluble-solids content and dry matter weight have been detected on chromosome 9 in a region without fruit weight QTLs. QTLs for seven aroma volatiles, lycopene content and fruit color were also co-localized. The QTL localizations were compared with those detected in crosses between Lycopersicon esculentum and wild tomato species. Received: 19 January 2000 / Accepted: 26 May 2000  相似文献   

20.
A genetic map of melon enriched for fruit traits was constructed, using a recombinant inbred (RI) population developed from a cross between representatives of the two subspecies of Cucumis melo L.: PI 414723 (subspecies agrestis) and ‘Dulce’ (subspecies melo). Phenotyping of 99 RI lines was conducted over three seasons in two locations in Israel and the US. The map includes 668 DNA markers (386 SSRs, 76 SNPs, six INDELs and 200 AFLPs), of which 160 were newly developed from fruit ESTs. These ESTs include candidate genes encoding for enzymes of sugar and carotenoid metabolic pathways that were cloned from melon cDNA or identified through mining of the International Cucurbit Genomics Initiative database (http://www.icugi.org/). The map covers 1,222 cM with an average of 2.672 cM between markers. In addition, a skeleton physical map was initiated and 29 melon BACs harboring fruit ESTs were localized to the 12 linkage groups of the map. Altogether, 44 fruit QTLs were identified: 25 confirming QTLs described using other populations and 19 newly described QTLs. The map includes QTLs for fruit sugar content, particularly sucrose, the major sugar affecting sweetness in melon fruit. Six QTLs interacting in an additive manner account for nearly all the difference in sugar content between the two genotypes. Three QTLs for fruit flesh color and carotenoid content were identified. Interestingly, no clear colocalization of QTLs for either sugar or carotenoid content was observed with over 40 genes encoding for enzymes involved in their metabolism. The RI population described here provides a useful resource for further genomics and metabolomics studies in melon, as well as useful markers for breeding for fruit quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号