首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
β-半乳糖苷酶(β-galactosidase)通过分解细胞壁半纤维素切除半乳糖键而参与果实软化。为了阐明香蕉(Musasp.)果实成熟过程中的软化与细胞壁代谢酶β-半乳糖苷酶基因表达之间的关系,采用RT-PCR方法,从成熟香蕉果实果肉中分离了编码β-半乳糖苷酶基因的部分cDNA(MA-Gal),序列分析表明,MA-Gal包含927bp,编码309个氨基酸,包含5个β-半乳糖苷酶结构域(典型真核生物中β-半乳糖苷酶包含7个结构域),推导的MA-Gal蛋白质中有β-半乳糖苷酶蛋白的催化活性部位GGPIILSQIENEY(F);系统进化树分析结果表明MA-Gal属于第一类β-半乳糖苷酶基因(该类主要在果实中表达);β-半乳糖苷酶活性和硬度的变化表明其与香蕉果实硬度变化密切相关;Northern分析显示,跃变前期的果肉中,MA-Gal基因的表达量很低,后随着果实的软化表达量不断增加,并在呼吸跃变后达到最高。所有结果表明,MA-Gal参与香蕉果实成熟过程中的软化。  相似文献   

2.
阿拉伯糖是果实软化过程中变化最明显的细胞壁糖残基之一,α-L-阿拉伯呋喃糖苷酶是导致细胞壁多糖中阿拉伯糖残基降解的主要糖苷酶。为阐明该酶在香蕉果实成熟软化中的作用,实验对香蕉贮藏过程中果皮和果肉中该酶活性以及果实硬度、呼吸强度和乙烯释放量的变化进行了研究。结果表明:α-L-阿拉伯呋喃糖苷酶在果实初期的变化很小,到果实硬度开始急剧下降时达到最大,增加量达10倍以上,且果肉中的酶活性大于果皮中;乙烯吸收剂处理延缓了香蕉果实呼吸和乙烯高峰的出现时间,降低了果实硬度、果皮和果肉中α-L-阿拉伯呋喃糖苷酶活性变化的速度和幅度。以上结果表明α-L-阿拉伯呋喃糖苷酶起诱导香蕉果实成熟的作用,在果实的软化中起着十分重要的作用,且其活性受乙烯的调节。  相似文献   

3.
以中华猕猴桃(ActinidiachinensisPlanch.)果实为试材,木葡聚糖内糖基转移酶(XET)cDNA为探针,研究果实成熟进程中XETmRNA的变化规律,探讨XET在果实后熟软化过程的作用。结果表明,20℃下外源乙烯处理可促进XETmRNA的积累,且这种效应因乙烯处理时间的加长而加强,进而加速了果实软化;0℃处理可抑制XETmRNA的增加,延缓果实软化,但当果实转入20℃后熟时,果实硬度迅速下降,而XETmRNA水平变化不明显。认为XET可能只是一种诱导酶,由它引起的细胞壁解聚并非是猕猴桃果实后熟软化的关键因子。  相似文献   

4.
香蕉果实成熟软化过程中β-D-木聚糖苷酶活性变化   总被引:1,自引:1,他引:0  
β-D-木聚糖苷酶是细胞壁半纤维素中阿拉伯木聚糖和木聚糖残基降解的主要酶,对香蕉贮藏过程中果皮、果肉中β-D-木聚糖苷酶活性以及果实硬度、呼吸强度和乙烯释放量的变化进行测定分析。结果显示:β-D-木聚糖苷酶活性在果实贮藏初期的变化很小,到果实硬度开始急剧下降时迅速增加,其增加量在果皮和果肉中分别为12和22倍以上,且果肉中的酶活性大于果皮中;乙烯吸收剂处理延缓了香蕉果实呼吸和乙烯的高峰出现以及果实硬度、果肉和果皮中β-D-木聚糖苷酶活性变化的速度和幅度,但并不改变其活性的变化趋势。结果证明,β-D-木聚糖苷酶能诱导香蕉果实成熟,在果实软化中起着十分重要的作用,且其活性受乙烯的调节。  相似文献   

5.
以"布鲁诺"美味猕猴桃(Actinidia deliciosa cv.Bruno)果实为材料,根据其它植物乙烯受体氨基酸保守区序列,设计简并引物,通过RT-PCR扩增出1个657bp大小的cDNA片段(Ad-ETR1)该片段编码219个氨基酸,与其它植物乙烯受体及其基因的氨基酸及核苷酸同源性在72%~90%之间.Northern杂交结果表明,猕猴桃果实成熟衰老进程中Ad-ETR1 mRNA的积累趋于增加.这种积累的最大值出现在乙烯进入跃变之后;乙烯处理可以促使Ad-ETR1 mRNA最大值提前出现,乙酰水杨酸(ASA)处理则显著抑制Ad-ETR1表达.  相似文献   

6.
香蕉谷氨酸脱羧酶基因克隆与表达   总被引:2,自引:0,他引:2  
根据抑制缩减杂交文库获得的香蕉谷氨酸脱羧酶基因片段,利用RACE技术,首次从香蕉果实中克隆了谷氨酸脱羧酶基因的cDNA全长.结果表明,该cDNA的ORF全长1 500 bp,编码499个氨基酸.Blast分析表明,该基因所推导的氨基酸序列与水稻、柑橘、白杨、番茄等具有较高的一致性,分别为82%、81% 、79% 、78%,推测其编码的蛋白质分子量为56.25 kD,等电点5.21,具有与钙调蛋白结合的C端延伸区域和磷酸吡哆醛结合位点.组织特异性和果实采后正常成熟不同阶段表达结果显示,该基因在香蕉根、茎、叶、花、果实中均有表达,果实中的表达量较高,正常成熟表达量的增加可能受内源乙烯诱导并促进乙烯生物合成,推测其可能在不同的生理过程中起作用,并且与果实成熟及乙烯生物合成密切相关.  相似文献   

7.
用乙烯利处理青熟香蕉,跃变后六天老熟,果皮出现芝麻点褐斑。跃变后果皮中的多酚氧化酶活性较跃变前低;果肉中的酶活性则跃变后较之跃变前高5—7倍。跃变前果肉中酚类物质较果皮高1—3倍,跃变后下降,果皮则不同,酚类物质跃变后较跃变前高。在香蕉整个后熟过程中,果肉酚含量与多酚氧化酶活性变化无相关性;果皮则呈显著负相关。  相似文献   

8.
钙对香蕉采后果实呼吸的影响   总被引:3,自引:0,他引:3  
本实验对香蕉成熟过程中水溶性钙的变化及CaCl_2溶液真空浸渗处理对香蕉果实呼吸作用的影响进行研究,结果表明,香蕉成熟期间,水溶性钙含量随成熟度的提高而增加,果实呼吸跃变上升前期,水溶性钙的增加尤为明显,果皮和果肉中水溶性钙含量与采后成熟天数呈正相关。以0.05mol/l和0.1mol/l CaCl_2溶液真空浸渗,可使香蕉果实呼吸跃变高峰延迟,但没有明显降低跃变峰值。  相似文献   

9.
乙烯感知和信号转导的初始成分是乙烯受体,为探明甜瓜乙烯受体基因Cm-ETR1在甜瓜果实成熟过程中的作用,以甜瓜品种河套蜜瓜为材料,根据GenBank中登录的甜瓜乙烯受体基因Cm-ETR1的cDNA序列(登录号为AF054806),设计合成特异性引物,采用RT-PCR技术克隆得到Cm-ETR1基因全长cDNA序列,提交到GenBank中(登录号为EF495185)。序列分析表明,序列长度为2 256 bp,编码区为2 223 bp,编码740个氨基酸,与已报道的cantalupenis甜瓜ETR1基因的cDNA序列完全一致。Cm-ETR1蛋白的系统进化树分析结果表明,该乙烯受体蛋白在各物种间高度保守,与黄瓜乙烯受体蛋白相似性最高,一致性为99%,与龙眼乙烯受体蛋白相似性最低,一致性为86%。定量PCR分析结果显示,随着甜瓜果实内源乙烯合成量和成熟程度的增加,Cm-ETR1基因的表达量同步增加,在果实乙烯跃变期,Cm-ETR1的表达量也达到最高值,内源乙烯合成量与Cm-ETR1基因表达量间呈显著正相关,表明Cm-ETR1基因在甜瓜果实成熟过程中可能具有重要的作用。  相似文献   

10.
巴梨成熟期间乙烯与脱落酸含量的变化   总被引:6,自引:0,他引:6  
乙烯和ABA在调节果实成熟过程中的作用已受到重视L,',8J。我们曾观察到杏与白兰瓜等跃变果实在成熟时,ABA积累发生在乙烯生成之前,外施ABA促进了杏果乙烯的生成与成熟,并且发现果实的耐贮藏性与果肉中ABA的含量有一定关系[a.,.4]巴梨是最易腐烂的跃变果实,是研究这一问题的适宜材料。因此,我们对发育与贮藏期的巴梨进行了果实呼吸、乙烯与ABA含量变化的研究。  相似文献   

11.
12.
Rapid ripening of mango fruit limits its distribution to distant markets. To better understand and perhaps manipulate this process, we investigated the role of plant hormones in modulating climacteric ripening of ??Kensington Pride?? mango fruits. Changes in endogenous levels of brassinosteroids (BRs), abscisic acid (ABA), indole-3-acetic acid (IAA), and ethylene and the respiration rate, pulp firmness, and skin color were determined at 2-day intervals during an 8-day ripening period at ambient temperature (21?±?1°C). We also investigated the effects of exogenously applied epibrassinolide (Epi-BL), (+)-cis, trans-abscisic acid (ABA), and an inhibitor of ABA biosynthesis, nordihydroguaiaretic acid (NDGA), on fruit-ripening parameters such as respiration, ethylene production, fruit softening, and color. Climacteric ethylene production and the respiration peak occurred on the fourth day of ripening. Castasterone and brassinolide were present in only trace amounts in fruit pulp throughout the ripening period. However, the exogenous application of Epi-BL (45 and 60?ng?g?1 FW) advanced the onset of the climacteric peaks of ethylene production and respiration rate by 2 and 1?day, respectively, and accelerated fruit color development and softening during the fruit-ripening period. The endogenous level of ABA rose during the climacteric rise stage on the second day of ripening and peaked on the fourth day of ripening. Exogenous ABA promoted fruit color development and softening during ripening compared with the control and the trend was reversed in NDGA-treated fruit. The endogenous IAA level in the fruit pulp was higher during the preclimacteric minimum stage and declined during the climacteric and postclimacteric stages. We speculate that higher levels of endogenous IAA in fruit pulp during the preclimacteric stage and the accumulation of ABA prior to the climacteric stage might switch on ethylene production that triggers fruit ripening. Whilst exogenous Epi-BL promoted fruit ripening, endogenous measurements suggest that changes in BRs levels are unlikely to modulate mango fruit ripening.  相似文献   

13.
Ethylene production by tissue slices from preclimacteric, climacteric, and postclimacteric apples was significantly reduced by isopentenyl adenosine (IPA), and by mixtures of IPA and indoleacetic acid, and of IPA, indoleacetic acid, and gibberellic acid after 4 hours of incubation. Ethylene production by apple (Pyrus malus L.) slices in abscisic acid was increased in preclimacteric tissues, decreased in climacteric peak tissues, and little affected in postclimacteric tissues. Indoleacetic acid suppressed ethylene production in tissues from preclimacteric apples but stimulated ethylene production in late climacteric rise, climacteric, and postclimacteric tissue slices. Gibberellic acid had less influence in suppressing ethylene production in preclimacteric peak tissue, and little influenced the production in late climacteric rise, climacteric peak, and postclimacteric tissues. IPA also suppressed ethylene production in pre- and postclimacteric tissue of tomatoes (Lycopersicon esculentum) and avocados (Persea gratissima). If ethylene production in tissue slices of ripening fruits is an index of aging, then IPA would appear to retard aging in ripening fruit, just as other cytokinins appear to retard aging in senescent leaf tissue.  相似文献   

14.
Aspects of the post-harvest physiology relating to storage and ripening of the fruit of tetraploid banana clones resistant to Sigatoka disease, have been compared with fruit of Valery, an important commercial triploid cultivar. Significant differences in susceptibility to low temperature injury, duration of the preclimacteric period, the texture of pulp and peel and ethylene evolution have been found between tetraploid and Valery fruit and also between tetraploid fruit of different clones. Fruit of Valery and one tetraploid clone developed serious chilling injury during storage at 12 °C whereas that of five other tetraploid clones showed only slight damage. The preclimacteric period for fruit of two tetraploid clones was 30–45% less than for Valery fruit at an equivalent stage of physical development. Pulp firmness of preclimacteric tetraploid fruit was 20–30% less than that of Valery fruit and the differences persisted through ripening. The softening response to applied ethylene was up to 15 h earlier in fruit of tetraploid clones than of Valery but respiratory patterns, colour development and starch-to-sugar conversion were similar. Unlike Valery fruit, ripe tetraploid fruit did not develop senescent spotting, and shelf life was terminated by rapid deterioration of peel strength to a state of severe finger drop. Temporal and quantitative differences occurred between fruit of tetraploid clones and Valery in production of ethylene and these may relate to the observed differences in control of softening in both pulp and peel.  相似文献   

15.
香蕉果实特异性ACC合酶的cDNA克隆及序列分析   总被引:6,自引:0,他引:6  
王新力  彭学贤  李宏   《生物工程学报》2000,16(2):134-136
根据ACC合酶高度保守区氨基酸序列设计两种兼并引物。通过RTPCR,克隆了香蕉果肉ACC合酶1693bp的cDNA片段。再根据其序列测定结果进行5′RACE(RapidamplificationofcDNAends)。最终确定香蕉果肉中ACC合酶的mRNA全长为1752个核苷酸。其中5′非翻译区74个核苷酸,编码区1461个核苷酸,3′非翻译区217个核苷酸,编码产物为486个氨基酸。通过Northern杂交分析,证明此ACC合酶基因的表达具有果实特异性  相似文献   

16.
Pectate lyase activity during ripening of banana fruit   总被引:2,自引:0,他引:2  
Payasi A  Sanwal GG 《Phytochemistry》2003,63(3):243-248
Pectate lyase (PEL) activity was demonstrated in ripe banana fruits on supplementing the homogenizing medium with cysteine and Triton X-100. The enzyme was characterized on the basis of alkaline pH optimum, elimination of the activity by EDTA and activation by Ca(2+). PEL activity was not detected in preclimacteric banana fruits. PEL activity increased progressively from early climacteric and reached maximum level at climacteric peak and declined in post climacteric and over ripened fruits. Replacing pectate with pectin in PEL assay manifested enzyme activity even in preclimacteric fruits. In contrast to PEL, polygalacturonase activity progressively increased during fruit ripening even in postclimacteric fruits.  相似文献   

17.
Paull RE  Chen NJ 《Plant physiology》1983,72(2):382-385
Pectin methylesterase (PME), polygalacturonase (PG), xylanase, cellulase, and proteinase activity were determined and related to respiration, ethylene evolution, and changes in skin color of papaya (Carica papaya L.) fruit from harvest through to the start of fruit breakdown. PME gradually increased from the start of the climacteric rise reaching a peak 2 days after the respiratory peak. PG and xylanase were not detectable in the preclimacteric stage but increased during the climacteric: during the post climacteric stage, the PG declined to a level one-quarter of peak activity with xylanase activity returning to zero. Cellulase activity gradually increased 3-fold after harvest to peak at the same time as PME, 2 days after the edible stage. Proteinase declined throughout the climacteric and postclimacteric phases. A close relationship exists between PG and xylanase and the rise in respiration, ethylene evolution, and softening. Cultivar differences in postclimacteric levels of enzymic activity were not detected.

An inhibitor of cellulase activity was detected in preclimacteric fruit. The inhibitor was not benzyl isothiocyanate (BITC). BITC did inhibit PG activity, though no inhibitor of PG activity was detected in preclimacteric homogenates when BITC was highest. The results indicate that inhibitors did not play a direct role in controlling wall softening.

  相似文献   

18.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号