首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
本研究旨在探讨腺苷酸活化蛋白激酶(AMP-activated protein kinase,AMPK)活化对单核细胞与内皮细胞黏附的影响及其分子机制。用不同剂量的AMPK激动剂5-氨基咪唑-4-甲酰胺核糖核苷酸(AICAR,0~2 mmol/L)或AMPK抑制剂compound C(10 mmol/L)处理肿瘤坏死因子α(tumor necrosis factorα,TNFα,10 ng/m L)诱导的人主动脉内皮细胞(human aortic endothelial cells,HAECs),用TNFα诱导过表达活性型或显性抑制型AMPK蛋白的HAECs。用荧光染色法观察AMPK对荧光标记的单核THP-1细胞与HAECs黏附的影响。用荧光定量PCR检测血管细胞黏附分子1(vascular cell adhesion molecule-1,VCAM-1)和细胞间黏附分子1(intercellular cell adhesion molecule-1,ICAM-1)m RNA表达水平,用ELISA法检测二者的蛋白分泌量;用Western blot检测核因子-kappa B(nuclear factor-kappa B,NF-κB)p65的211位点赖氨酸乙酰化水平,用ELISA法检测NF-κB p65DNA结合活性,并用试剂盒检测p300乙酰转移酶活性。通过小干扰RNA抑制HAECs组蛋白乙酰转移酶p300蛋白表达后,检测TNFα对NF-κB p65 DNA结合活性、黏附分子ICAM-1、VCAM-1的表达及单核细胞黏附率的影响。结果显示,AICAR显著抑制TNFα诱导的单核细胞与HAECs的黏附,在HAECs中下调TNFα诱导的ICAM-1、VCAM-1的m RNA水平上调和蛋白分泌。AICAR的效应可以被AMPK抑制剂compound C完全阻断。转染活性型AMPKα显著抑制TNFα诱导的ICAM-1、VCAM-1m RNA表达和分泌,以及单核细胞-内皮细胞黏附,而转染显性抑制型AMPKα则无明显影响。RNAi干预抑制p300活性显著抑制TNFα诱导的黏附分子表达和单核-内皮细胞黏附。AMPK激活可抑制TNFα诱导的p300乙酰转移酶活性,抑制NF-κB p65的211位赖氨酸的乙酰化,降低NF-κB p65 DNA结合活性。以上结果提示,AMPK激活抑制单核细胞-内皮细胞黏附,作用机制可能与其降低p300酶活性,下调NF-κB p65转录活性密切相关。  相似文献   

2.
磷脂酰肌醇转移蛋白(phosphatidylinositol/phosphatidylcholine transfer proteins,PITP)普遍存在于真核生物细胞中,PITP能够结合并交换一分子的磷脂酰肌醇(phosphatidylinositol,PI)或磷脂酰胆碱(phosphatidylcholine,PC),并促进这两类脂分子在细胞内膜组分间的转移。PITP对细胞内膜组分间脂类的运输和代谢、分泌囊泡的形成和运输、磷脂酶C(phospholipase,PLC)调节的信号传导以及神经退化等生理生化过程具有重要的影响。综述了近年来PITP的研究进展,并对目前研究中存在的一些问题进行探讨。  相似文献   

3.
载脂蛋白CⅢ(apolipoprotein CⅢ,apo CⅢ)在致动脉粥样硬化中有直接作用。首先,apo CⅢ激活血液循环单核细胞,细胞表面黏附分子β1整合素表达上调,促进单核细胞与血管内皮发生黏附;其次,apo CⅢ诱导血管内皮细胞表达血管细胞黏附分子-1(vascular cell adhesion molecule-1,VCAM-1)和细胞间黏附分子-1(intercellular cell adhesion molecule-1,ICAM-1),募集循环中的单核细胞并发生黏附;最后,apo CⅢ诱导血管内皮细胞发生胰岛素抵抗,导致内皮功能紊乱,引发内皮炎症和动脉硬化。  相似文献   

4.
本研究旨在探讨腺苷酸活化蛋白激酶(AMP-activated protein kinase,AMPK)活化对单核细胞与内皮细胞黏附的影响及其分子机制。用不同剂量的AMPK激动剂5-氨基咪唑-4-甲酰胺核糖核苷酸(AICAR,0~2 mmol/L)或AMPK抑制剂compound C(10 mmol/L)处理肿瘤坏死因子α(tumor necrosis factorα,TNFα,10 ng/m L)诱导的人主动脉内皮细胞(human aortic endothelial cells,HAECs),用TNFα诱导过表达活性型或显性抑制型AMPK蛋白的HAECs。用荧光染色法观察AMPK对荧光标记的单核THP-1细胞与HAECs黏附的影响。用荧光定量PCR检测血管细胞黏附分子1(vascular cell adhesion molecule-1,VCAM-1)和细胞间黏附分子1(intercellular cell adhesion molecule-1,ICAM-1)m RNA表达水平,用ELISA法检测二者的蛋白分泌量;用Western blot检测核因子-kappa B(nuclear factor-kappa B,NF-κB)p65的211位点赖氨酸乙酰化水平,用ELISA法检测NF-κB p65DNA结合活性,并用试剂盒检测p300乙酰转移酶活性。通过小干扰RNA抑制HAECs组蛋白乙酰转移酶p300蛋白表达后,检测TNFα对NF-κB p65 DNA结合活性、黏附分子ICAM-1、VCAM-1的表达及单核细胞黏附率的影响。结果显示,AICAR显著抑制TNFα诱导的单核细胞与HAECs的黏附,在HAECs中下调TNFα诱导的ICAM-1、VCAM-1的m RNA水平上调和蛋白分泌。AICAR的效应可以被AMPK抑制剂compound C完全阻断。转染活性型AMPKα显著抑制TNFα诱导的ICAM-1、VCAM-1m RNA表达和分泌,以及单核细胞-内皮细胞黏附,而转染显性抑制型AMPKα则无明显影响。RNAi干预抑制p300活性显著抑制TNFα诱导的黏附分子表达和单核-内皮细胞黏附。AMPK激活可抑制TNFα诱导的p300乙酰转移酶活性,抑制NF-κB p65的211位赖氨酸的乙酰化,降低NF-κB p65 DNA结合活性。以上结果提示,AMPK激活抑制单核细胞-内皮细胞黏附,作用机制可能与其降低p300酶活性,下调NF-κB p65转录活性密切相关。  相似文献   

5.
炎症在脑梗死的发病机制中扮演着非常重要的角色,动脉粥样硬化是脑梗死的病理基础,动脉粥样硬化被认为是一种慢性炎症过程,这种炎症过程与黏附分子的表达有关,如细胞间黏附分子-1(ICAM-1),它能黏附循环中的白细胞,促进内皮细胞表面粥样斑块的形成,许多研究表明,ICAM-1与脑梗死密切相关,本文就二者的关系做一综述.  相似文献   

6.
佛波酯诱导一种新的磷脂酶D酶解产物的生成   总被引:1,自引:1,他引:0  
在人肺癌表面细胞株A-549中检测到佛波酯诱导的丁醇化鞘脂分子的产生。用[^3H]-丝氨酸标记细胞,其放射性在磷脂酰胆碱、磷脂酰丝氨酸、磷脂酰乙醇胺极性头部的分布很容易被检测到,而在磷脂酸及其直接代谢衍生物中并不存在,提示这种磷脂酶D的酶解产物来源于鞘脂分子的水解,而不同于以甘油磷脂为底物的磷脂酶D的酶解产物。蛋白激酶C的抑制剂或通过佛波酯长时间处理下调细胞内蛋白激酶C水平,可抑制佛波酯诱导的丁酯化鞘脂分子的产生,表明导致这种磷脂酶D的活化需要蛋白激酶C的参与。  相似文献   

7.
磷脂酰肌醇-4,5-二磷酸(phosphatidylinositol-4,5-bisphosphate,PIP2)是细胞膜上一种重要的磷脂酰肌醇,通过作为第二信使前体及自身信号分子的作用,控制其效应物的靶向定位和活性从而调节细胞迁移、囊泡运输、细胞形态发生、信号传导等过程.细胞迁移异常会导致人类多种疾病包括神经发育异常、阿尔茨海默病、癌症和纤毛疾病等.作为细胞骨架的调节剂,PIP2在细胞迁移的关键作用已经被广泛证实,本文将从由PIP5KIs介导的PIP2产生与踝蛋白、Rho家族小GTP酶等效应物关联调节黏附作用和肌动蛋白聚合的角度,讨论PIP2在细胞迁移中发挥作用的具体机制.  相似文献   

8.
为探讨磷脂酰丝氨酸(phosphatidylserine,PS)外翻和磷脂氧化在凋亡细胞被吞噬细胞清除中的作用,用脂质体整合的方法将不同的磷脂整合到红细胞上或用N-乙酰马来酰胺(N-ethylmaleimide,NEM)预处理红细胞然后整合磷脂,制备含不同凋亡信号的红细胞模型,测定巨噬细胞对整合不同磷脂信号红细胞的结合率和吞噬率。结果表明,单独整合PS或用NEM处理造成PS外翻,可显著性提高巨噬细胞对红细胞的结合率,但对吞噬率没有影响;同时整合PS和氧化磷脂(氧化PS或氧化磷脂酰胆碱(phosphatidylcholine,PC)),或用NEM处理造成PS外翻后再整合氧化PS或氧化PC,不仅可显著提高巨噬细胞对红细胞的结合率,而且可显著性提高吞噬率。这些结果提示PS外翻可能参与了巨噬细胞对凋亡细胞的结合,而磷脂氧化可能启动了巨噬细胞对凋亡细胞的吞噬,二者协作才可能完成巨噬细胞对凋亡细胞的清除。  相似文献   

9.
目的:研究重组人粒细胞集落刺激因子(rhG-CSF)动员对供者CD4+T细胞表面分子淋巴细胞功能相关抗原-1(LFA-1)、细胞间黏附分子-1(ICAM-1)、L-选择素(LAM-1)和人整合素-4(VLA-4)的表达及其介导的CD4+T细胞功能的影响,探讨外周血干细胞移植过程中CD4+T细胞免疫耐受机制。方法:使用三色荧光标记检测动员前及动员后第5天供者外周血LFA-1、ICAM-1、LAM-1和VLA-4的表达率,ELISA方法检测动员前后CD4+T细胞分泌IFN-γ和IL-4能力,免疫磁性分选法分离纯化CD4+T细胞,检测动员前后CD4+T细胞对基质细胞衍生因子-1α(SDF-1α)的迁移能力和对ICAM-1的黏附能力。结果:动员前后CD4+T细胞LFA-1(CD11a)和VLA-4(CD49d)表达率差异无统计学意义(P>0.01),动员前后CD4+T细胞LAM-1(CD62L)和ICAM-1(CD54)的表达率差异均有统计学意义,动员前显著高于动员后(P<0.01);动员前后CD4+T淋巴细胞向SDF-1α的迁移率差异无统计学意义(P>0.01);动员后CD4+T细胞对ICAM-1的黏附率降低(P<0.01);动员后IL-4和IFN-γ两个细胞因子在外周血血清的浓度均降低(P<0.01)。结论:rhG-CSF动员不影响CD4+T细胞LFA-1和VLA-4表达及CD4+T细胞迁移,但影响CD4+T细胞ICAM-1和LAM-1表达以及CD4+T细胞通过LFA-1对ICAM-1的黏附能力影响,并可能影响CD4+T细胞分泌细胞因子IL-4及IFN-γ的功能。  相似文献   

10.
汪菲  高春记  黄文荣  李晓红  李猛 《生物磁学》2012,(4):631-634,618
目的:研究重组人粒细胞集落刺激因子(rhG-CSF)动员对供者CD4+T细胞表面分子淋巴细胞功能相关抗原-1(LFA-1)、细胞间黏附分子-1(ICAM-1)、L-选择素(LAM-1)和人整合素-4(VLA-4)的表达及其介导的CD4+T细胞功能的影响,探讨外周血干细胞移植过程中CD4+T细胞免疫耐受机制。方法:使用三色荧光标记检测动员前及动员后第5天供者外周血LFA-1、ICAM-1、LAM-1和VLA-4的表达率,ELISA方法检测动员前后CD4+T细胞分泌IFN-γ和IL-4能力,免疫磁性分选法分离纯化CD4+T细胞,检测动员前后CD4+T细胞对基质细胞衍生因子-1α(SDF-1α)的迁移能力和对ICAM-1的黏附能力。结果:动员前后CD4+T细胞LFA-1(CD11a)和VLA-4(CD49d)表达率差异无统计学意义(P〉0.01),动员前后CD4+T细胞LAM-1(CD62L)和ICAM-1(CD54)的表达率差异均有统计学意义,动员前显著高于动员后(P〈0.01);动员前后CD4+T淋巴细胞向SDF-1α的迁移率差异无统计学意义(P〉0.01);动员后CD4+T细胞对ICAM-1的黏附率降低(P〈0.01);动员后IL-4和IFN-γ两个细胞因子在外周血血清的浓度均降低(P〈0.01)。结论:rhG-CSF动员不影响CD4+T细胞LFA-1和VLA-4表达及CD4+T细胞迁移,但影响CD4+T细胞ICAM-1和LAM-1表达以及CD4+T细胞通过LFA-1对ICAM-1的黏附能力影响,并可能影响CD4+T细胞分泌细胞因子IL-4及IFN-γ的功能。  相似文献   

11.
Increasing evidence indicates that phospholipid oxidation plays important roles in atherosclerosis. Here, we investigated the involvement of Rho-family GTPases inphosphatidylcholine hydroperoxide (PCOOH)-induced THP-1 cell adhesion to ICAM-1. Isoprenoid depletion by fluvastatin and geranylgeranyltransferase inhibition by GGTI-286 suppressed PCOOH-induced cell adhesion to ICAM-1 and F-actin-rich membrane protrusion formation. Pull-down assays demonstrated the activation of Rac1 and Rac2 in PCOOH-treated cells. Pan-Rho-family GTPase inhibitor Clostridium difficile toxin B, Rac-specific inhibitor NSC23776, and RNA interference of the Rac isoforms suppressed the cell adhesion. These findings indicate the involvement of Rac GTPase activation in PCOOH-induced cell adhesion to ICAM-1 via actin reorganization.  相似文献   

12.
CD98 is a multifunctional heterodimeric membrane protein involved in the regulation of cell adhesion as well as amino acid transport. We show that CD98 cross-linking persistently activates Rap1 GTPase in a LFA-1-dependent manner and induces LFA-1/ICAM-1-mediated cell adhesion in lymphocytes. Specific phosphatidylinositol-3-kinase (PI3K) inhibitors suppressed both LFA-1 activation and Rap1GTP generation, and abrogation of Rap1GTP by retroviral over-expression of a specific Rap1 GTPase activating protein, SPA-1, totally inhibited the LFA-1/ICAM-1-mediated cell adhesion. These results suggest that CD98 cross-linking activates LFA-1 via the PI3K signaling pathway and induces accumulation of Rap1GTP in a LFA-1-dependent manner, which in turn mediates the cytoskeleton-dependent cell adhesion process.  相似文献   

13.
Phospholipid hydroperoxide glutathione peroxidase (GPx4) is a member of the family of selenium-dependent enzymes that catalyze the reduction of cell membrane-bound phospholipid hydroperoxides in situ and thus protects against membrane damage. Overexpression of GPx4 protects cultured cells from phosphatidylcholine hydroperoxide (PCOOH)-induced loss of mitochondrial membrane potential and blocks cell death induced by treatment with various apoptotic agents. We have generated mice that are heterozygous for a GPx4 null allele (GPx4 +/-); the homozygous null genotype is embryonic lethal. We report that cultured lung fibroblasts (LFs) isolated from adult GPx4 +/- mice had approximately 50% of the GPx4 activity of LFs from GPx4 +/+ mice and were significantly more susceptible to H2O2, cadmium, and cumene hydroperoxide-induced cytotoxicity, as measured by neutral red assay. Both GPx4 +/+ and GPx4 +/- LFs were susceptible to PCOOH-induced cytotoxicity at a high PCOOH concentration. We also found that GPx4 +/- LFs have lower mitochondrial membrane potential, greater cardiolipin oxidation, and lower amounts of reduced thiols relative to GPx4 +/+ LFs, but are more resistant than GPx4 +/+ LFs to further decrements in these endpoints following PCOOH treatment. These results suggest that adult lung fibroblasts deficient in GPx4 may have upregulated compensatory mechanisms to deal with the highly oxidized environment in which they developed.  相似文献   

14.
The B cell adaptor molecule of 32 kDa (Bam32) is an adaptor that links the B cell antigen receptor (BCR) to ERK and JNK activation and ultimately to mitogenesis. After BCR cross-linking, Bam32 is recruited to the plasma membrane and accumulates within F-actin-rich membrane ruffles. Bam32 contains one Src homology 2 and one pleckstrin homology domain and is phosphorylated at a single site, tyrosine 139. To define the function of Bam32 in membrane-proximal signaling events, we established human B cell lines overexpressing wild-type or mutant Bam32 proteins. The basal level of F-actin increased in cells expressing wild-type or myristoylated Bam32 but decreased in cells expressing either an Src homology-2 or Tyr-139 Bam32 mutant. Overexpression of wild-type Bam32 also affected BCR-induced actin remodeling, which was visualized as increases in F-actin-rich membrane ruffles. In contrast, Bam32 mutants largely blocked the BCR-induced increase in cellular F-actin. The positive and negative effects of Bam32 variants on F-actin levels were closely mirrored by their effects on the activation of the GTPase Rac1, which is known to regulate actin remodeling in lymphocytes. Bam32-deficient DT40 B cells showed decreased Rac1 activation and a failure of Rac1 to co-localize with the BCR, whereas cells overexpressing Bam32 had increased constitutive Rac1 activation. These results suggest that Bam32 regulates the cytoskeleton through Rac1. Bam32 variants also affected downstream signaling to JNK in a manner similar to that of Rac1, suggesting that the effect of Bam32 on JNK activation may be at least partially mediated through Rac1. Our results demonstrate a novel phosphorylation-dependent function of Bam32 in regulating Rac1 activation and actin remodeling.  相似文献   

15.
We have examined the role of the small GTPase Rho and its downstream effector, the Rho-associated kinase (ROCK), in the control of the adhesive and signaling function of the lymphocyte function-associated antigen-1 (LFA-1) integrin in human T-lymphocytes. Inhibition of Rho (either by treatment with C3-exoenzyme or transfection with a dominant-negative form of Rho (N19Rho)) or ROCK (by treatment with Y-27632) results in the following: (a) partial disorganization and aggregation of cortical filamentous actin (F-actin); (b) induction of LFA-1-mediated cellular adhesion to the LFA-1 ligand intercellular adhesion molecule-1 (ICAM-1) through a mechanism involving clustering of LFA-1 molecules, rather than alterations in the level of expression or in the affinity state of this integrin; and (c) induction of cellular polarization and activation of the tyrosine kinase PYK2. Transfection of T-cells with a constitutively active form of Rho (V14Rho) blocks the clustering of LFA-1 on the membrane and the LFA-1-mediated activation of PYK2. Importantly, the activation of PYK2 caused by inhibition of Rho or ROCK takes place only when the T-cells are plated onto ICAM-1 but not when they are either prevented from interacting with ICAM-1 with anti-LFA-1 blocking antibodies or when they are plated on the nonspecific poly-l-lysine substrate. These results indicate that the small GTPase Rho regulates the tyrosine kinase PYK2 in T-cells through the F-actin-mediated control of the activity of the integrin LFA-1. These findings represent a novel paradigm for the regulation of the activity of a cytoplasmic tyrosine kinase by the small GTPase Rho.  相似文献   

16.
In response to external stimuli, cells modulate their adhesive state by regulating the number and intrinsic affinity of receptor/ligand bonds. A number of studies have shown that cell adhesion is dramatically reduced at room or lower temperatures as compared with physiological temperature. However, the underlying mechanism that modulates adhesion is still unclear. Here, we investigated the adhesion of the monocytic cell line THP-1 to a surface coated with intercellular adhesion molecule-1 (ICAM-1) as a function of temperature. THP-1 cells express the integrin lymphocyte function-associated antigen-1 (LFA-1), a receptor for ICAM-1. Direct force measurements of cell adhesion and cell elasticity were carried out by atomic force microscopy. Force measurements revealed an increase of the work of de-adhesion with temperature that was coupled to a gradual decrease in cellular stiffness. Of interest, single-molecule measurements revealed that the rupture force of the LFA-1/ICAM-1 complex decreased with temperature. A detailed analysis of the force curves indicated that temperature-modulated cell adhesion was mainly due to the enhanced ability of cells to deform and to form a greater number of longer membrane tethers at physiological temperatures. Together, these results emphasize the importance of cell mechanics and membrane-cytoskeleton interaction on the modulation of cell adhesion.  相似文献   

17.
Intracellular signals are required to activate the leukocyte-specific adhesion receptor lymphocyte function-associated molecule-1 (LFA-1; CD11a/CD18) to bind its ligand, intracellular adhesion molecule-1 (ICAM-1). In this study, we investigated the role of the cytoskeleton in LFA-1 activation and demonstrate that filamentous actin (F-actin) can both enhance and inhibit LFA-1-mediated adhesion, depending on the distribution of LFA-1 on the cell surface. We observed that LFA-1 is already clustered on the cell surface of interleukin-2/phytohemagglutinin-activated lymphocytes. These cells bind strongly ICAM-1 and disruption of the actin cytoskeleton inhibits adhesion. In contrast to interleukin-2/phytohemagglutinin-activated peripheral blood lymphocytes, resting lymphocytes, which display a homogenous cell surface distribution of LFA-1, respond poorly to intracellular signals to bind ICAM-1, unless the actin cytoskeleton is disrupted. On resting peripheral blood lymphocytes, uncoupling of LFA-1 from the actin cytoskeleton induces clustering of LFA-1 and this, along with induction of a high-affinity form of LFA-1, via "inside-out" signaling, results in enhanced binding to ICAM-1, which is dependent on intact intermediate filaments, microtubules, and metabolic energy. We hypothesize that linkage of LFA-1 to cytoskeletal elements prevents movement of LFA-1 over the cell surface, thus inhibiting clustering and strong ligand binding. Release from these cytoskeletal elements allows lateral movement and activation of LFA-1, resulting in ligand binding and "outside-in" signaling, that subsequently stimulates actin polymerization and stabilizes cell adhesion.  相似文献   

18.
During inflammation, leukocytes bind to the adhesion receptors ICAM-1 and VCAM-1 on the endothelial surface before undergoing transendothelial migration, also called diapedesis. ICAM-1 is also involved in transendothelial migration, independently of its role in adhesion, but the molecular basis of this function is poorly understood. Here we demonstrate that, following clustering, apical ICAM-1 translocated to caveolin-rich membrane domains close to the ends of actin stress fibres. In these F-actin-rich areas, ICAM-1 was internalized and transcytosed to the basal plasma membrane through caveolae. Human T-lymphocytes extended pseudopodia into endothelial cells in caveolin- and F-actin-enriched areas, induced local translocation of ICAM-1 and caveolin-1 to the endothelial basal membrane and transmigrated through transcellular passages formed by a ring of F-actin and caveolae. Reduction of caveolin-1 levels using RNA interference (RNAi) specifically decreased lymphocyte transcellular transmigration. We propose that the translocation of ICAM-1 to caveola- and F-actin-rich domains links the sequential steps of lymphocyte adhesion and transendothelial migration and facilitates lymphocyte migration through endothelial cells from capillaries into surrounding tissue.  相似文献   

19.
Human leukocyte endothelial adhesion and transmigration occur in the early stage of the pathogenesis of atherosclerosis. Vascular endothelial cells are targeted by pro-inflammatory cytokines modulating many gene proteins responsible for cell adhesion, thrombosis and inflammatory responses. This study examined the potential of compound K to inhibit the pro-inflammatory cytokine TNF-α induction of monocyte adhesion onto TNF-α-activated human umbilical vein endothelial cells (HUVEC). HUVEC were cultured with 10 ng/ml TNF-α with individual ginsenosides of Rb1, Rc, Re, Rh1 and compound K (CK). Ginsenosides at doses of ?50 μM did not show any cytotoxicity. TNF-α induced THP-1 monocyte adhesion to HUVEC, and such induction was attenuated by Rh1 and CK. Consistently, CK suppressed TNF-α-induced expression of HUVEC adhesion molecules of VCAM-1, ICAM-1 and E-selectin, and also Rh1 showed a substantial inhibition. Rh1 and CK dampened induction of counter-receptors, α4/β1 integrin VLA-4 and αL/β2 integrin LFA-1 in TNF-α-treated THP-1 cells. Additionally, CK diminished THP-1 secretion of MMP-9 required during transmigration, inhibiting transendothelial migration of THP-1 cells. CK blunted TNF-α-promoted IL-8 secretion of HUVEC and CXCR1 expression of THP-1 monocytes. Furthermore, TNF-α-activated endothelial IκB phosphorylation and NF-κB nuclear translocation were disturbed by CK, and TNF-α induction of α4/β1 integrin was abrogated by the NF-κB inhibitor SN50. These results demonstrate that CK exerts anti-atherogenic activity with blocking leukocyte endothelial interaction and transmigration through negatively mediating NF-κB signaling.  相似文献   

20.
Activated Raf kinases and Rac GTPases were shown to cooperate in the oncogenic transformation of fibroblasts, which is characterised by the disassembly of the cellular actin cytoskeleton, a nearly complete loss of focal adhesion complexes and deregulated cell proliferation. This is surprising since the Rac GTPase induces actin structures and the adhesion of suspended cells to extracellular matrix proteins. NIH 3T3 cells expressing a hydroxytamoxifen-inducible oncogenic c-Raf-1-oestrogen receptor fusion protein (c-Raf-1-BxB-ER, N-BxB-ER cells) undergo morphological transformation upon stimulation of the Raf kinase. We show that treatment with the Rac, Rho and Cdc42 activating Escherichia coli toxin CNF1 or coexpression of an activated RacV12 mutant partially inhibits and reverses the disassembly of cellular actin structures and focal adhesion complexes by oncogenic Raf. Activation of the Rac GTPase restores actin structures and focal adhesion complexes at the cellular boundary, leading to spreading of the otherwise spindle-shaped Raf-transformed cells. Actin stress fibres, however, which are regulated by the function of the Rho GTPase, are disassembled by oncogenic Raf even in the presence of activated Rac and Rho. With respect to the RacV12-mediated spreading of Raf-transformed cells, we postulate an anti-oncogenic function of the activated Rac. Another feature of cell transformation is the deregulation of cell cycle control. NIH 3T3 cells expressing high levels of the c-Raf-1-BxB-ER protein undergo a cell cycle arrest upon stimulation of the oncogenic Raf kinase. Our results show that in N-BxB-ER-RacV12 cells the expression of the activated RacV12 mediates cell proliferation in the presence of high-intensity Raf signals and high levels of the Cdk inhibitor p21(Cip1). These results indicate a pro-oncogenic function of the Rac GTPase with respect to the deregulation of cell cycle control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号