首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Δ9 硬脂酰 ACP脱氢酶(SAD)是参与植物不饱和脂肪酸生物合成的关键酶。该研究从续随子(Euphorbia lathyris)种子转录组数据库中筛选得到续随子ElSAD2基因序列,对其序列表达特性进行分析,并鉴定ElSAD2基因的功能。结果显示:(1)续随子ElSAD2的 cDNA全长1 665 bp,ORF为1 194 bp,编码397个氨基酸残基;系统进化分析显示ElSAD2蛋白与蓖麻(Ricinus communis)RcSAD1蛋白等亲缘关系较近。(2)ElSAD2在续随子各器官中均有表达,其中在花后30 d种子中表达量最高。(3)在BY4389缺陷型酵母中过表达ElSAD2,使缺陷酵母不饱和脂肪酸含量升高。(4)本氏烟草瞬时表达ElSAD2,使得烟草叶片总油脂和油酸含量分别提高2.46%和2.1%。研究发现,ElSAD2能催化单不饱和油酸的生物合成,可进一步应用于油料植物油脂产量和品质改良。  相似文献   

2.
为探讨沙棘种子油高积累碳十八不饱和脂肪酸的多基因协同作用机制,以近缘低油沙棘品系‘绥棘1号’和高油品系‘新俄3号’6个不同发育期的种子为材料,利用气相色谱飞行时间质谱法测定种子油脂肪酸组份,采用qRT-PCR方法分析不饱和脂肪酸合成积累相关基因KAR、FATB、Δ9 D、KASⅡ、SAD、FAD2、FAD3、FAD7和FAD8的表达模式,验证多基因表达对碳十八不饱和脂肪酸积累的影响。结果表明:(1)‘绥棘1号’和‘新俄3号’种子油均高积累碳十八不饱和脂肪酸,分别占总脂肪酸的87.71%和88.68%;种子发育期间,油酸相对含量一直呈上升趋势,亚油酸相对含量短时下降后上升趋稳,而亚麻酸相对含量则呈先上升后下降趋稳。(2)FATB基因下调表达协同Δ9 D基因低表达,使C16∶0-ACP转化为棕榈酸和棕榈油酸的代谢减弱,而KAR和KASⅡ基因的相对上调表达,促进了硬脂酸合成,为碳十八不饱和脂肪酸的合成积累了较多前体。(3)SAD基因的持续高表达催化硬脂酸去饱和为油酸,且持续上升的SAD/FATB基因表达比直接提高了脂肪酸的去饱和速率;FAD2、FAD3、FAD7和FAD8基因在亚油酸和亚麻酸快速合成期间同时出现明显的表达量峰值,进而促进油酸逐步去饱和为亚油酸和亚麻酸。研究认为,沙棘种子油高积累碳十八不饱和脂肪酸源于FATB和Δ9 D基因的低表达及KAR、KASⅡ、SAD、FAD2、FAD3、FAD7和FAD8基因的协同高表达,本研究结果为进一步理解种子油中碳十八不饱和脂肪酸的合成积累提供了理论依据,对改良植物油脂的不同脂肪酸比具有重要意义。  相似文献   

3.
以烟草Nicotiana tabacum L.为宿主植物,分别在细胞质内质网和质体内定位表达酿酒酵母Saccharomyees cerevisiae脂酰-CoA-Δ9脱氢酶(ScΔ9D),以期提高植物组织中棕榈油酸(16∶1Δ9)的积累量和分析该酶不同亚细胞定位表达对油脂代谢的影响。与野生型和空载体(对照)植物相比,转基因烟草植株叶片中单不饱和的棕榈油酸及顺式十八碳烯酸(18∶1Δ11)含量明显提高,而饱和的棕榈酸(16∶0)含量相应减少,多不饱和的亚油酸(18∶2Δ9,12)和亚麻酸(18∶3Δ9,12,15)含量亦降低。ScΔ9D质体定位表达烟叶中棕榈油酸及顺式十八碳烯酸含量分别是ScΔ9D细胞质内质网定位表达烟叶的2.7和1.9倍。这表明酵母脂酰-Δ9脱氢酶能在高等植物细胞中正确催化棕榈酸(16∶0)转化为棕榈油酸(16∶1Δ9),而且在质体内表达的效应显著高于在细胞质内质网上的效应。新建立了一种应用脂酰-CoA-Δ9脱氢酶代谢工程培育植物组织高水平合成积累棕榈油酸等ω-7脂肪酸的策略,有助于在生物量大的烟叶等营养器官中组装ω-7脂肪酸合成途径以生产优质生物燃油。  相似文献   

4.
硬脂酰-ACP脱氢酶(SAD)催化硬脂酸脱氢生成油酸,是形成不饱和脂肪酸的关键酶。该研究从紫苏转录组数据库中筛选鉴定紫苏硬脂酰-ACP脱氢酶(PfSAD)家族基因,并进行生物信息学分析及保守功能域分析,用qRT-PCR技术检测PfSADs各成员在不同组织中的表达特性,以探讨PfSAD家族基因在调控种子脂肪酸组分中的作用,为紫苏脂肪酸组分的遗传改良提供基因元件。结果显示:(1)从该课题组前期自测的紫苏转录组数据库中共检测出6个PfSAD家族基因,其编码蛋白的氨基酸长度介于367~396 aa之间,均具有SAD的保守结构域和二铁中心,预测其基因编码蛋白均定位于叶绿体。(2)多序列比对结果显示,紫苏PfSADs蛋白序列与拟南芥、蓖麻及可可等植物的SAD蛋白序列相似性均在50%以上;系统进化分析显示,6个紫苏SAD蛋白被分为3个亚组,其中第一个亚组包含PfSAD1,第二亚组包含PfSAD2、PfSAD3,第三亚组包含PfSAD4、PfSAD5和PfSAD6。(3)实时荧光定量PCR分析发现,PfSADs各成员在‘晋紫苏1号’不同组织中的表达量差异显著,其中PfSAD1主要在叶中表达,PfSAD2、PfSAD3、PfSAD4和PfSAD5在种子中表达量较高,PfSAD6在花中具有显著表达优势。研究表明,PfSADs具有典型的保守基序及催化SAD的活性中心,其各成员在不同的组织中高表达,推测这6个基因均参与了硬脂酰ACP(C18∶0-ACP)脱氢生成油酰基ACP(Δ9C18∶1-ACP)的过程,在紫苏油脂合成代谢过程中发挥重要作用。  相似文献   

5.
该研究以烟草品系NC89的无菌苗叶片为受体材料,采用前期构建的能同步抑制种子中FAD2(Δ12-油酸去饱和酶基因)与FatB(酰基转移酶基因)表达的RNAi载体,通过农杆菌介导转化获得了转基因烟草植株,分析转基因植株种子中的脂肪酸组分。结果显示:与对照相比,转基因植株种子中FAD2和FatB基因的表达水平分别降低了23%和11%;转基因植株种子的脂肪酸组分中,饱和脂肪酸棕榈酸和硬脂酸平均含量分别为8.02%和4.45%,多不饱和脂肪酸亚油酸平均含量为76.82%,较对照分别降低了2.91%、9.92%和3.47%;而转基因植株种子中单不饱和脂肪酸油酸含量高达7.48%,比对照提高46.38%。研究表明,同步抑制FAD2和FatB基因的表达能够显著提高烟草种子中油酸组分的含量,为进一步改良油料作物品质奠定了基础。  相似文献   

6.
以烟草Nicotiana tabacum L.为宿主植物,分别在细胞质内质网和质体内定位表达酿酒酵母Saccharom,ees cerevisiae脂酰-CoA-△9脱氢酶(Sc△9D),以期提高植物组织中棕榈油酸(16∶1△9)的积累量和分析该酶不同亚细胞定位表达对油脂代谢的影响.与野生型和空载体(对照)植物相比,转基因烟草植株叶片中单不饱和的棕榈油酸及顺式十八碳烯酸(18∶1△11)含量明显提高,而饱和的棕榈酸(16∶0)含量相应减少,多不饱和的亚油酸(18∶2△9,12)和亚麻酸(18∶3△9,12,15)含量亦降低.Sc△9D质体定位表达烟叶中棕榈油酸及顺式十八碳烯酸含量分别是Sc△9D细胞质内质网定位表达烟叶的2.7和1.9倍.这表明酵母脂酰-△9脱氢酶能在高等植物细胞中正确催化棕榈酸(16∶0)转化为棕榈油酸(16∶1△9),而且在质体内表达的效应显著高于在细胞质内质网上的效应.新建立了一种应用脂酰-CoA-△9脱氢酶代谢工程培育植物组织高水平合成积累棕榈油酸等ω-7脂肪酸的策略,有助于在生物量大的烟叶等营养器官中组装ω-7脂肪酸合成途径以生产优质生物燃油.  相似文献   

7.
为提高大豆Glycine max种子含油量和营养品质,文中以二酰甘油酰基转移酶1(Diacylglycerol acyltransferase 1,DGAT1)基因为遗传修饰靶标。将来自高油植物斑鸠菊Vernonia galamensis L.编码DGAT1酶蛋白的c DNA克隆Vg DGAT1A在大豆种子特异超表达。连续选择获得高代(T7)Vg DGAT1A转基因大豆株系。转基因株系表型鉴定显示,在大豆种子发育中期(30–45 DAF),Vg DGAT1A高表达,相应地DGAT酶活性是非转基因野生型和空载体转化对照的7.8倍。转基因成熟种子含油量比对照提高了5.1%,淀粉含量比对照减少2%–3%,蛋白质含量与对照无显著差异。此外,转基因大豆种子百粒重(14.5 g)和种子萌发率(95.6%)与对照亦无明显差异。种子油脂脂肪酸成分分析显示,转基因大豆种子油中抗氧化的油酸(C18:1Δ9)含量比对照提高8.2%,相应地易氧化的亚油酸(C18:2Δ9,12)和亚麻酸(C18:3Δ9,12,15)分别减少6%和2%。这些数据表明,种子特异超表达外源Vg DGAT1A基因,打破了大豆种子含油量和蛋白质含量的负连锁,显著提高种子含油量且未导致蛋白含量降低。转基因大豆种子重量和萌发率亦未显负效应,而且种子油脂抗氧化性和营养品质得以改善。研究表明应用这一高酶活性Vg DGAT1A的基因工程是提高种子含油量和改善油脂品质的一条有效途径。  相似文献   

8.
信息库     
《工业微生物》2004,34(2):45-50
1 酿酒酵母对乙醇的耐性依靠细胞的油酸含量乙醇是一种微生物生长的抑制剂。有些酿酒酵母对乙醇有耐性,在含乙醇条件下,细胞中单不饱和脂肪酸增加。本研究探讨了酿酒酵母中不饱和脂肪酸对乙醇的生长抑制作用的影响。酿酒酵母中的不饱和脂肪酸(UFA)成分比较简单,大概只有单UFAs棕榈油酸(Δ9Z C1 6 :1 )和油酸(Δ9Z C1 8:1 ) ,并以前者为主。酿酒酵母中这两种UFAs是由氧和依赖NADH的不饱和棕榈酸(C1 6 :1 )或硬脂酸(C1 8:1 ) ,分别由去饱和酶催化形成的。单整合膜去饱和酶是OLE1基因编码的。本研究在统一的遗传背景下,(i)通过去饱和…  相似文献   

9.
生物医学证据表明,过量的油脂特别是脂肪酸(fatty acids,FA)在非脂肪组织累积会引起脂代谢障碍,引起细胞功能紊乱或坏死。脂肪酸延长酶家族参与脂肪酸代谢,具有真核生物的高度保守性,且与膜脂的代谢密切相关。但脂肪酸延长酶与细胞脂毒效应的关系并不清楚。该文利用模式生物酿酒酵母在脂类代谢研究中性状易于表征、遗传操作便利的优势,通过对比脂肪酸延长酶缺陷型elo1Δ、elo2Δ和elo3Δ与野生型酵母(wild-type,WT)对不同脂肪酸胁迫的响应,发现极长链脂肪酸延长酶基因ELO2和ELO3缺陷后对油酸(oleic acid,OLA)高度敏感;细胞脂滴及中性脂质的代谢对维持细胞脂类平衡起关键作用。研究结果显示,长链脂肪酸的合成缺陷或油酸处理均促进细胞脂滴的形成,同时显著提高细胞中性油脂(TAG)和甾醇酯(SE)合成;采用气相色谱–质谱联用技术分析脂肪酸组成,结果显示,ELO3缺陷,C_(26)脂肪酸基本检测不到,而C_(20)与C_(22)脂肪酸会累积;ELO2缺失后,C_(26)脂肪酸的含量也明显降低。而油酸的处理会增加BY4741胞内总的极长链脂肪酸的比例;elo2Δ和elo3Δ的不饱和脂肪酸与饱和脂肪酸的比例增大;相反,过表达脂肪酸延长酶基因,与野生型菌株相比能显著降低细胞油酸的含量。模式生物脂肪酸延长酶对细胞脂质代谢及油酸胁迫响应的研究,为医学脂代谢障碍及细胞脂毒效应研究提供了基础数据。  相似文献   

10.
FUS3转录因子是调控植物种子油脂合成的关键因子。为探讨亚麻荠CsFUS 3基因在脂质合成和积累过程中的作用,该研究对CsFUS 3基因家族进行全基因组鉴定,分析CsFUS 3基因的时空表达模式,并解析CsFUS 3-1和CsFUS 3-2基因在植物油脂合成中的功能,为深入解析CsFUS 3基因在亚麻荠油脂合成中的功能及亚麻荠高油品种选育提供理论基础。结果表明:(1)利用AtFUS3蛋白序列,在亚麻荠基因组数据库中鉴定出2条完整的CsFUS3蛋白序列,分别命名为CsFUS3-1和CsFUS3-2,亚细胞定位发现2个CsFUS3蛋白均位于细胞核。(2)亚麻荠CsFUS3-1和CsFUS3-2蛋白与拟南芥AtFUS3蛋白的亲缘关系最近,具有与拟南芥AtFUS3蛋白相似的理化性质、高级结构以及完整的B3功能域。(3)qRT-PCR结果显示,CsFUS 3-1和CsFUS 3-2基因仅在种子中表达,且随着种子的发育成熟,2个CsFUS 3基因的表达量均呈先增高后降低的变化趋势,并在花后30 d时表达量达到最高。(4)CsFUS3和CsWRI1蛋白互作以及CsFUS 3对OLE和ABI 3基因的转录调控可能是亚麻荠高油性状的关键调控途径。(5)烟草瞬时表达分析表明,与野生型相比,转CsFUS 3-1和CsFUS 3-2基因的烟草叶片总油脂含量分别提高了0.95%和1.12%,表明亚麻荠CsFUS 3基因能够提高烟叶总油脂的合成积累。  相似文献   

11.
采用RT-PCR和RACE技术从油葵(Helianthus annuus L.)种子中克隆了DGAT基因的cDNA全长序列,命名为HaDl(GenBank登录号为HM 015632).将HaDl与CaMV 35S组成型启动子融合,构建植物表达载体pBI-HaDl,通过根癌农杆菌介导转化烟草.对转基因植株进行GUS及PCR检测,同时采用气相色谱-质谱法(GC-MS)分析转基因烟草叶片中脂肪酸各成分的含量.结果表明:HaDl基因cDNA全长1 936 bp,最大开放阅读框为1 524 bp,编码507个氨基酸;推测的氨基酸序列与其它植物已报道的DGAT1基因的氨基酸序列一致性为70%~80%,具有DGAT1蛋白保守的二酰甘油结合基序"HKWIVRHLYFP",因此HaDl基因属于DGAT1基因家族.GUS活性染色及PCR检测均证明外源HaDl整合到烟草基因组并成功表达.转基因烟草叶片脂肪酸含量测定发现,油酸、软脂酸和硬脂酸的含量得到提高,推测HaDl是植物油脂合成相关的重要基因.  相似文献   

12.
作为重要的粮油饲兼用作物,大豆为世界膳食提供高达约71%的蛋白质和29%的油脂。随着人口不断增长和大豆消费需求的不断提高,在有限的耕地面积和单产条件下,大豆品质的遗传改良则更具重要意义。该文综述了大豆种子蛋白和油脂含量两个重要品质性状调控的研究进展,总结了调控大豆蛋白和油脂合成的关键酶和转录因子及因子间的相互作用,并根据蛋白和油脂合成代谢调控途径中关键酶和转录因子作用机制,绘制了大豆蛋白和油脂合成代谢的分子调控网络。此外,该文还讨论了当前大豆种子蛋白油脂含量调控研究存在的瓶颈及对策,以期为大豆种子品质的遗传改良和高产品种培育提供参考。  相似文献   

13.
酮脂酰-ACP合成酶Ⅱ(KASⅡ)是催化棕榈酸(16∶0-ACP)延伸为硬脂酸(18∶0-ACP)的关键酶,其活性强弱决定着18碳脂肪酸含量的高低。本文以杜氏盐藻(Dunaliella salina)为试材,分离鉴定杜氏盐藻DsKASⅡ基因编码序列,采用生物信息学工具解析DsKASⅡ酶蛋白的亚细胞定位、高级结构、理化性质及系统发育等特性。检测氮胁迫下的DsKASⅡ表达量,以及藻细胞脂肪酸、叶绿素和β-胡萝卜素的含量。结果表明,DsKASⅡ编码的酶蛋白长度为476 aa,pI为6. 99,含叶绿体靶向肽和较多亲水区。二级结构主要由α-螺旋(22. 48%),β-片层(22. 06%)和无规则卷曲(55. 46%)组成。三级结构预测表明该蛋白整体呈紧密的心形结构,活性酶蛋白为同源二聚体。系统发育分析表明,DsKASⅡ氨基酸序列与莱茵衣藻CrKASⅡ同源性达99%,可能二者有着共同的进化祖先。qRT-PCR揭示,与正常培养的杜氏盐藻相比,DsKASⅡ在氮胁迫条件下的表达量明显上调,第3天时的表达量比正常培养的高4. 5倍。氮胁迫下藻细胞总油脂、油酸(C18∶1)和类胡萝卜素含量显著提高,然而棕榈酸(C16∶0)和叶绿素的含量明显降低。这表明,氮胁迫诱导杜氏盐藻DsKASⅡ基因上调表达,将更多的棕榈酸催化为硬脂酸,进而提高了单不饱和油酸的富集以及类胡萝卜素的积累。本研究为后续进一步解析杜氏盐藻氮胁迫条件下,油脂与胡萝卜素合成积累及藻细胞响应胁迫机制和优质富油藻种培育提供了科学参考。  相似文献   

14.
为鉴定可用于大豆(Glycine max)遗传改良的优异基因源,从大豆基因组中鉴定获得一个大豆Gm WIN1-6转录因子,应用生物信息学工具和实时荧光定量反转录PCR(qRT-PCR)技术系统分析GmWIN1-6转录因子的理化性质、蛋白结构、时空表达谱及盐胁迫响应。结果表明:从大豆花组织中克隆到GmWIN1-6基因的开放阅读框(ORF),其编码蛋白由176个氨基酸组成,在N端具有一个保守的AP2结构域,属于亲水性蛋白;GmWIN1-6蛋白的二级结构中,无规则卷曲占比例最大;三级结构与拟南芥(Arabidopsis thaniana)AtWIN1相似;系统进化分析显示GmWIN1-6与AtWIN1亲缘关系最近;GmWIN1-6转录因子在大豆各组织中的表达差异明显,其中在花组织中表达量最高,其次为种子发育中后期,且与种子油脂积累时期基本吻合;在大豆幼苗盐胁迫条件下,GmWIN1-6基因上调表达。这些试验发现预示着GmWIN1-6转录因子可能参与大豆种子发育和油脂富集以及幼苗胁迫响应的调控,为大豆遗传改良和分子育种提供理论依据。  相似文献   

15.
紫苏(Perilla frutescens)是一种重要食药同源油料作物,种子含油量高达46%−58%,其中α-亚麻酸(C18:3)含量占60%以上。溶血磷脂酸酰基转移酶(lysophosphatidic acid acyltransferase,LPAT)是植物种子三酰基甘油组装过程中的一类关键限速酶。本研究从紫苏发育种子中克隆了其编码基因(PfLPAT2),并利用qRT-PCR技术检测PfLPAT2基因在紫苏不同组织及不同发育时期种子的表达特性。构建PfLPAT2/GFP融合表达载体并通过农杆菌介导瞬时侵染本氏烟草叶片,检测PfLPAT2蛋白的亚细胞定位。构建大肠杆菌(Escherichia coli)表达载体、酵母表达载体和组成型植物过表达载体,分别转化大肠杆菌突变株SM2-1、酿酒酵母(Saccharomyces cerevisiae)野生型菌株INVSc1和普通烟草(Nicotiana tabacum),分析PfLPAT2蛋白的酶活性及生物学功能。结果表明,紫苏PfLPAT2基因ORF为1 155 bp,编码384个氨基酸。功能结构域预测显示PfLPAT2蛋白具有溶血磷脂酸酰基转移酶典型的保守区。PfLPAT2基因在紫苏根、茎、叶、花和开花后10、20、30、40 d的种子中均有表达,且在开花后20 d的种子中高表达。亚细胞定位结果显示PfLPAT2蛋白定位于细胞质。大肠杆菌功能互补测试表明,PfLPAT2可恢复SM2-1细胞膜脂生物合成,具有LPAT酶活性。与非转基因对照相比,转PfLPAT2基因酵母的总油脂含量显著提高,且脂肪酸各组分的含量发生改变,油酸(C18:1)含量增加明显,预示PfLPAT2对C18:1具有较高的底物偏好性。转基因烟草叶片总脂肪酸含量比对照组提高了约0.42倍,C18:1含量增加了约1倍。转基因株系总脂提高和脂肪酸组分的改变表明PfLPAT2异源表达可以促进宿主油脂合成和健康有益型脂肪酸(C18:1和C18:3)的积累。本研究为深入解析紫苏油脂特别是不饱和脂肪酸合成的分子调控机制和改良油料作物油脂品质提供理论依据和基因元件。  相似文献   

16.
甘蓝型油菜是一种重要的油料作物,为了改良其种子脂肪酸组分,提升其经济价值,本研究分析了油菜种子发育时期脂肪酸合成积累模式及BnFAD2、BnFAD3、BnFATB基因的表达规律,认为这3个基因在种子发育中后期(授粉后25d起)的高效表达对油酸合成积累有着重要影响。通过Napin启动子诱导对油菜植株中BnFAD2、BnFAD3、BnFATB基因进行RNAi共干扰抑制,以达到提升油酸含量的目的。试验结果表明,转基因油菜种子中BnFAD2、BnFAD3、BnFATB基因的表达受到强烈抑制,种子中油酸含量由66.76%提升至82.98%,且油脂合成的相关基因同步出现表达上调。  相似文献   

17.
该研究基于已公布的大豆基因组序列,旨在对大豆蔗糖合成酶(SUS)家族成员进行全基因组鉴定及表达分析,以探讨大豆SUS家族基因的生物学功能,为GmSUS基因的利用及大豆高产育种奠定理论基础。结果表明:(1)在大豆基因组中共鉴定到12个蔗糖合成酶基因(GmSUS1~GmSUS12)。(2)GmSUS蛋白之间序列一致性很高,均具有植物SUS家族蛋白特有的蔗糖合成结构域和糖基转移结构域;除GmSUS5外,其他GmSUS蛋白N端均具有一个保守的丝氨酸(Ser)磷酸化位点。(3)系统进化分析显示,GmSUS蛋白主要聚为3组(SUSⅠ~SUSⅢ),且位于同1组的GmSUS基因大部分具有相似的内含子/外显子分布模式。(4)12个GmSUS基因不均匀地分布在大豆的10条染色体上,片段复制可能导致了GmSUS基因在大豆基因组中的扩增。(5)表达特性分析表明,大豆SUS家族成员具有不同的组织表达模式,GmSUS8在大豆种子中表达量很高,GmSUS1、GmSUS7和GmSUS5在大豆根瘤中表达量很高,GmSUS3、GmSUS11和GmSUS12在所有被检测的组织均具有较高的表达。  相似文献   

18.
拟南芥VAS1基因编码一个磷酸吡哆醛依赖性氨基转移酶,可将吲哚丙酮酸转化为吲哚乙酸的生物合成前体色氨酸,是生长素代谢调控中的一个关键酶。对大豆VAS1基因家族进行全基因组鉴定与表达模式分析,并探究其在根系发育中的作用,为深入挖掘大豆VAS1基因的功能奠定基础。运用生物信息学方法对该基因家族成员进行鉴定和分析,采用实时荧光定量分析该家族在不同逆境处理下的表达模式,克隆GmVAS1-1,进一步研究其功能,并通过酵母双杂交试验筛选大豆GmVAS1-1蛋白的互作因子。结果表明,大豆VAS1基因家族共有2个成员,命名为GmVAS1-1和GmVAS1-2。系统进化树、基因结构和保守基序分析表明,大豆VAS1与豆科植物亲缘关系更近。启动子序列分析发现多个逆境和光响应元件。表达模式分析表明,大豆VAS1家族基因在不同种子发育时期的胚乳中表达量较高。荧光定量PCR分析表明,在干旱和盐胁迫下,大豆根系VAS1基因表达量显著上调。拟南芥过量表达GmVAS1-1植株侧根数较野生型显著减少。酵母互作试验及预测共筛选到17个与GmVAS1-1互作的蛋白。大豆VAS1基因家族成员在胚乳中表达量较高,且响应多种逆境及...  相似文献   

19.
大豆油酸脱氢酶(FAD2-1B)基因是种子特异表达基因,利用PCR方法从大豆基因组DNA中分离FAD2-1B基因的启动子片段,命名为FP.PLACE在线启动子预测工具分析表明:序列中含有多种典型的种子特异性表达元件,如Skn-1 motif、AACACA、SEF4 motif、E-box、ACGT等.将克隆得到的FP片段替换pCAMBIA1301中的CaMV35S启动子,构建表达载体pCAM-FP.通过农杆菌介导法在大豆各组织中进行瞬时表达,GUS组织化学染色显示FP驱动GUS基因在大豆根、茎、叶中基本不表达,在种子中有较高的表达活性,推测FP启动子具有种子特异表达活性.  相似文献   

20.
中长链聚羟基脂肪酸酯(mcl-PHA)是一大类由微生物合成的天然生物聚酯,因具有可再生性和生物降解性越来越受到人们的关注。Mcl-PHA可由一些假单胞菌类利用自身的脂肪酸合成途径或β-氧化途径来合成。耶氏解脂酵母具有很好的脂/脂肪酸分解代谢能力,但是它体内缺乏PHA合成酶不能合成mcl-PHA。采用代谢工程策略构建重组解脂酵母,外源表达来自铜绿假单胞菌PAO1(Pseudomonas aeruginosa PAO1)的PHA合成酶。在PHA合成酶的C端添加PTS1过氧化物酶体定位信号序列,使其在过氧化物酶体内发挥功能,并对其编码基因PhaC1进行密码子优化得到oPhaC1。利用pINA1312载体构建表达框,借助载体上的zeta序列元件将oPhaC1基因表达框整合至酵母基因组,完成基因的稳定表达。重组菌PSOC在葡萄糖为唯一碳源的培养基中几乎不产PHA,添加0.5%的油酸时可合成占细胞干重0.67%的mcl-PHA。在含三油酸甘油酯的培养基中发酵72h产生1.51% mcl-PHA(wt%)。实验结果充分证明重组解脂酵母作为有潜力的微生物细胞工厂可以用于生产mcl-PHA,也为将来利用富含油脂和其他营养的餐厨垃圾水解液等廉价资源生产mcl-PHA打下基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号