首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
降雨对草地土壤呼吸季节变异性的影响   总被引:4,自引:0,他引:4  
王旭  闫玉春  闫瑞瑞  杨桂霞  辛晓平 《生态学报》2013,33(18):5631-5635
利用土壤碳通量自动观测系统(LI-8150)对呼伦贝尔草原在自然降雨条件下的土壤呼吸作用进行了野外定位连续观测,研究结果表明:降雨对土壤呼吸作用存在激发效应和抑制效应,降雨发生后1-2 h内土壤呼吸速率可增加约1倍,当单次或者连续降雨累积量大于7-8 mm,或土壤含水量大于29%-30%时,降雨对土壤呼吸会产生明显的抑制作用。土壤呼吸的激发效应往往体现在次日,表现为次日平均土壤呼吸速率的显著升高;而抑制效应则在当日即可体现出来,表现为观测当日平均土壤呼吸速率的明显下降。土壤呼吸季节变异性与降雨频率和降雨强度密切相关,在降雨量一定的情况下,较低的降雨频率和较高的降雨强度会增加土壤呼吸的变异性。呼伦贝尔草甸草原而言,在生长季土壤平均含水量为16.5%时,土壤呼吸的温度敏感性值(Q10)为2.12;而平均土壤含水量为26%时,Q10值为2.82,明显高于前者,土壤含水量与Q10之间存在正相关关系。降雨导致土壤呼吸的激发效应和抑制效应交替发生,使草地土壤呼吸的季节变异性增加,降雨格局变化必然会对草地碳循环和碳通量特征产生深刻影响。  相似文献   

2.
王丹  吕瑜良  徐丽  何秀  徐志伟  赵宁  王瑞丽  何念鹏 《生态学报》2013,33(19):6373-6381
土壤有机质是陆地生态系统最大的碳库,土壤有机质分解速率及其温度敏感性对生态系统碳循环及其碳汇功能具有重要影响。为揭示植被类型变化对森林土壤有机质分解的影响,以长白山针阔混交林的原生林和次生林为研究对象,分别将土壤在不同水分(30%、60%和90%土壤饱和含水量(SSM))和不同温度(5、10、15、20、25和30 ℃)下培养,在为期56 d的培养期内分9次测定土壤碳矿化速率。实验结果表明:植被类型、培养温度和水分对土壤碳矿化速率具有显著影响,且三者间存在显著的交互效应(P < 0.001)。次生林土壤碳矿化累积量显著高于原生林(P < 0.05),在90% SSM和温度30 ℃培养状况下分别为346.41 μgC/g和241.01 μgC/g。包含温度和水分的双因素模型可很好地拟合土壤碳矿化速率的变化,温度和水分可共同解释土壤碳矿化速率的82.7%-95.9%变异。次生林土壤碳矿化温度敏感性(Q10)显著高于原生林;水分对温度敏感性的影响较复杂,次生林在60% SSM最高,而原生林在90% SSM最高。总之,原生林遭砍伐后将会加速土壤有机质的分解,从而降低土壤有机质含量;另外,根据Q10值可以预测次生林土壤有机质的分解速率对全球变暖反映更明显。  相似文献   

3.
阳小成  阿舍小虎  苗原  刘银占 《生态学报》2016,36(17):5371-5378
采用土壤二氧化碳(CO_2)通量自动测量系统,对不同放牧模式(全年禁牧、夏季放牧、冬季放牧和自由放牧)下川西北高寒草甸的土壤呼吸进行监测,比较了不同放牧模式下土壤呼吸的季节动态和温度敏感性。研究发现:1)放牧模式可以改变高寒草甸土壤呼吸的季节动态变化。禁牧、夏季放牧以及自由放牧样地的土壤呼吸在季节上的变化趋势基本相似,而冬季放牧样地的土壤呼吸最大值与前者相比明显向后推迟;2)放牧模式并不改变高寒草甸年平均土壤呼吸速率,但对不同季节土壤呼吸速率的影响不同;3)不同放牧模式可以改变土壤呼吸对温度的敏感性(Q_(10))。不同放牧模式下土壤呼吸Q_(10)值大小依次为:禁牧1a(8.13)冬季放牧(7.49)禁牧3a(5.46)夏季放牧(5.20)自由放牧(4.53)。该地区土壤呼吸的Q_(10)值均明显高于热带和其它温带草地土壤呼吸的Q_(10)值。结果表明,放牧模式是影响高寒草甸土壤碳排放的一个重要因素。此外,在未来全球气候变暖背景下,在生长季节无放牧干扰的高寒草甸可能比放牧干扰的高寒草甸释放出更多的CO_2到大气中。  相似文献   

4.
内蒙古不同类型草地土壤氮矿化及其温度敏感性   总被引:3,自引:0,他引:3  
土壤氮矿化(Nitrogen mineralization)是土壤氮循环的重要环节,对土壤氮素供应以及植物生产力的维持具有十分重要的意义。沿中国东北草地样带(Northeastern China Transect, NECT)分别在典型草地、过渡草地及荒漠草地设置了3个实验样地,利用不同温度(5、10、15、20 ℃和25 ℃)和不同水分(30%、60%和90%土壤饱和含水量,Saturated soil moisture, SSM)的室内培养途径,探讨了不同类型草地的土壤氮矿化速率、土壤氮矿化的温度敏感性(Q10)及其主要影响因素。实验结果表明:从典型草地至荒漠草地,土壤全碳、全氮、全磷、微生物生物量碳氮含量均表现为逐渐下降的趋势;类似地,土壤净氮矿化速率、硝化速率也逐渐降低。在20 ℃和60% SSM时,土壤净氮矿化速率表现为典型草地 (0.715 mg N kg-1 d-1) > 过渡草地 (0.507 mg N kg-1 d-1) > 荒漠草地 (0.134 mg N kg-1 d-1);相反,温度敏感性却逐渐升高,温度敏感性与基质质量指数呈负相关。草地类型和水分对于土壤净氮矿化速率、硝化速率具有显著影响,且二者间具有显著的交互效应。包含温度和水分的双因素模型可很好地拟合土壤氮矿化速率的变化趋势(P < 0.0001),二者可共同解释土壤硝化速率92%-96%的变异。土壤氮矿化沿着草地演替呈现出很好的空间格局、并与温度和水分具有密切关系,为解释内蒙古草地空间分布格局提供了理论基础。  相似文献   

5.
杉木人工林不同深度土壤CO2通量   总被引:3,自引:0,他引:3  
王超  黄群斌  杨智杰  黄蓉  陈光水 《生态学报》2011,31(19):5711-5719
土壤CO2通量具有明显的时间和空间变异性。土壤温度和含水量是影响土壤CO2通量的重要因素,同时,不同深度的土壤CO2通量对温度和含水量变化的响应差异较大,因此,研究土壤CO2通量和影响因素随土壤深度的变化,对于准确评估土壤碳排放具有重要意义。选择福建三明杉木人工林(Cunninghamia lanceolata)作为研究对象,利用非散射红外CO2浓度探头和Li-8100开路式土壤碳通量系统,并使用Fick扩散法计算了0-60cm深度土壤CO2的通量,结果表明:(1)5种扩散模型计算的表层(5cm)CO2通量与Li-8100测量结果均具有显著相关性(P<0.01),Moldrup气体扩散模型计算结果较好。(2)土壤CO2浓度随深度的增加而升高,但60cm深度以下土壤CO2浓度开始降低;不同深度土壤CO2浓度的日变化均呈现单峰型;0-60cm土壤CO2通量日通量均值变化范围为0.54-2.17μmol m-2 s-1;(3)指数拟合分析显示,5、10cm和60cm深度处土壤CO2通量与温度具有显著相关性,Q10值分别为1.35、2.01和4.95。不同深度土壤含水量与CO2通量的相关性不显著。  相似文献   

6.
为了确定γ-氨基丁酸B受体(gamma-aminobutyric acid B receptor,GABABR)基因在异育银鲫(Carassius auratus gibelio)不同组织中的表达,本实验分别对异育银鲫不同组织中GABABR1基因进行RT-PCR扩增,并进行了克隆和测序,在与GenBank基因库中已知GABABR1序列进行同源性比对的基础上采用邻接法构建系统发育树,并进一步分析其在异育银鲫不同组织内的表达水平。经克隆获得异育银鲫GABABR1基因CDS区序列383 bp,编码127个氨基酸。荧光定量PCR结果显示,GABABR1基因在异育银鲫脑、肝、肾、心、肠、鳔、鳃、肌、尾鳍、脾、卵巢、精巢组织中均有表达,且在不同组织中的表达水平由高到低依次是:脑>尾鳍>精巢>心、肠、鳔>卵巢、脾、鳃、肌>肝、肾。本研究证实了GABABR1基因在异育银鲫各组织中表达的广泛性,且有明显的组织特异性。  相似文献   

7.
上海典型城市草坪土壤呼吸特征   总被引:3,自引:0,他引:3  
采用CFX-2开放式呼吸测定系统测定了上海城区百慕大、黑麦草-百慕大混播、结缕草和狗牙根4种典型草坪的土壤呼吸速率。结果表明:4种草坪的土壤呼吸速率均呈明显季节变化,最大值出现在7—8月,最小值出现在12月—翌年1月;4种草坪土壤呼吸平均速率依次为百慕大草坪<黑麦草-百慕大混播草坪<结缕草草坪<狗牙根草坪,其中百慕大草坪的土壤呼吸速率变化范围为0.13~2.25 μmol·m-2·s-1,黑麦草-百慕大混播草坪为1.16~5.95 μmol·m-2·s-1,结缕草草坪为0.93~8.27 μmol·m-2·s-1,狗牙根草坪为1.21~9.27 μmol·m-2·s-1;4种草坪的土壤呼吸速率与气温、5 cm地温和10 cm地温均呈极显著指数相关;百慕大草坪和黑麦草-百慕大混播草坪的日变化均呈单峰曲线,与气温、5 cm地温和10 cm地温的日变化趋势一致;4种草坪土壤呼吸对温度的敏感性指数即Q10值为1.60~2.66;除结缕草外,其他草坪的土壤呼吸速率与土壤含水率相关性不显著;草坪的呼吸特征与其生长习性直接相关,而冷暖季混播草坪Q10值小,对提高城市生态景观和环境质量有积极作用。  相似文献   

8.
模拟氮沉降对石栎和苦槠幼苗土壤呼吸的影响   总被引:3,自引:0,他引:3  
李凯  江洪  由美娜  曾波 《生态学报》2011,31(1):82-89
用LI-8100开路式土壤碳通量测量系统测定模拟氮沉降4种不同处理水平(0、60、120\,240 kg · hm-2 · a-1)下石栎(Lithocarpus glabra)和苦槠(Castanopsis sclerophylla)幼苗的土壤呼吸速率及土壤温度、含水量对其土壤呼吸的影响。结果表明,氮沉降对土壤呼吸的影响根据施氮水平和幼苗的种类不同而异。低氮(60 kg · hm-2 · a-1)处理下石栎和苦槠的土壤呼吸速率平均值分别为(4.014±0.812)μmol · m-2 · s-1和(5.170±0.689)μmol · m-2 · s-1,比对照组(0 kg · hm-2 · a-1)土壤呼吸速率平均值(3.802±0.948)μmol · m-2 · s-1和(3.557±0.906)μmol · m-2 · s-1分别高5%和45%;两树种在中、高氮处理下均出现对土壤呼吸明显的抑制。其中石栎中、高氮实验组的土壤呼吸速率分别为(2.653±0.681)μmol · m-2 · s-1、(2.592±0.736)μmol · m-2 · s-1, 比对照组低27%和29%。苦槠中、高氮实验组的土壤呼吸速率为(3.563±0.402)μmol · m-2 · s-1、(3.466±0.994)μmol · m-2 · s-1, 比对照组低7%和8%;石栎在高氮(240 kg · hm-2 · a-1)处理水平下,其土壤呼吸速率同10cm土壤温度之间呈现显著的指数关系(R2=0.811,P=0.001),而在低、中氮实验均未发现有明显指数关系。苦槠各处理水平下其土壤呼吸与土壤温度之间均未发现有明显的指数关系;在土壤呼吸与5cm土壤含水量的相关性方面,仅有苦槠高氮实验组表现出明显的二次方程关系(R2=0.722),而其低、中氮实验组及石栎各实验组均未有明显的相关性;与单因素(温度、含水量)拟合它们与土壤呼吸速率的方程相比,多元回归分析得到的土壤呼吸速率同土壤温度和含水量之间的拟合方程在P=0.05水平上能更好地解释土壤呼吸的变化情况。石栎和苦槠在氮沉降处理下的土壤呼吸温度系数Q10值分别为2.29、1.95、1.59和1.46、1.41、1.76,同对照组2.64和1.78相比,均有明显降低,且两者Q10值的变化分别呈递减和先减小后增大的趋势,表明氮沉降是影响石栎和苦槠土壤CO2通量的一个重要因素。  相似文献   

9.
沙坡头人工植被演替过程的土壤呼吸特征   总被引:3,自引:0,他引:3  
为探讨人工植被演替过程对土壤呼吸速率的影响,本文利用碱液吸收法同步测定了腾格里沙漠东南缘1956、1964、1981、1987、1989、2007年始植的人工植被区和2007年新铺设的草方格固沙区及流沙区的土壤呼吸速率变化,同时分析了土壤水分和温度对上述不同样地土壤呼吸的影响。结果表明:1) 总体而言,土壤呼吸速率随着人工植被演替时间的延长而逐渐增大。当土壤含水量较高时,不同始植年代人工植被区的土壤呼吸速率具有显著的差异(P<0.05);当土壤含水量较低时,不同始植年代植被区的土壤呼吸速率没有显著的差异(P>0.05)。2)土壤呼吸速率与土壤含水量呈正相关关系,且相关系数随着人工植被演替时间的延长而逐渐增大。3)利用土壤呼吸速率-土壤温度指数函数关系计算得到不同人工植被演替阶段土壤呼吸速率的Q10值均较低(平均值仅为1.02)。土壤温度对1987、1989年人工植被区内的土壤呼吸速率产生了显著影响(P<0.05),而对其他样地的土壤呼吸速率影响不显著 (P>0.05)。综合说明,人工植被的演替过程改变了土壤呼吸速率大小及其对土壤水分和温度的响应。  相似文献   

10.
大气CO2浓度升高对春玉米土壤呼吸的影响   总被引:2,自引:0,他引:2  
徐洲  冯倩  王玉  赵金磊  李常鑫  王丽梅 《生态学报》2021,41(18):7331-7338
为探讨春玉米不同生育期土壤呼吸速率对大气CO2浓度升高的响应,以黄土高原旱作春玉米为研究对象,通过改进的开顶式气室(OTC)模拟大气CO2浓度升高的环境,在田间条件下设置自然大气CO2浓度(CK)、OTC对照(OTC,CO2浓度同CK)与CO2浓度升高(OTC+CO2,OTC系统自动控制CO2浓度700 μmol/mol)3种处理。研究了旱区覆膜高产栽培春玉米播前(V0)、六叶期(V6)、九叶期(V9)、吐丝期(R1)、乳熟期(R3)、蜡熟期(R5)及完熟期(R6)土壤呼吸速率对大气CO2浓度升高的响应特征,以及大气CO2浓度升高对土壤呼吸速率的温度与水分效应的影响。研究发现,OTC+CO2处理土壤呼吸速率,与CK相比,在R3和R5期分别增加43%、104%(P<0.05),与OTC相比,R3和R5期分别提升了63%、109%(P<0.05);OTC处理与CK相比,在整个生育期对土壤呼吸影响不显著;3种处理条件下,土壤温度和水分随生育期变化趋势基本一致,土壤呼吸速率与土壤温度和水分分别呈指数相关和抛物线型相关;结果表明:大气CO2浓度升高对土壤呼吸的影响因生育期而异,土壤温度和土壤水分是影响旱地农田土壤呼吸的重要因素,CO2浓度升高会使土壤呼吸温度效应值(Q10)降低,土壤呼吸对土壤水分响应的阈值提高。  相似文献   

11.
Zhang F W  Liu A H  Li Y N  Zhao L  Wang Q X  Du M Y 《农业工程》2008,28(2):453-462
Using the CO2 flux data measured by the eddy covariance method in the northeast of Qinghai-Tibetan Plateau in 2005, we analyzed the carbon flux dynamics in relation to meteorological and biotic factors. The results showed that the alpine wetland ecosystem was the carbon source, and it emitted 316.02 gCO2 · m−2 to atmosphere in 2005 with 230.16 gCO2 · m−2 absorbed in the growing season from May to September and 546.18 gCO2 · m−2 released in the non-growing season from January to April and from October to December. The maximum of the averaged daily CO2 uptake rates and release rates was (0.45 ± 0.0012) mgCO2 · m−2 · s−1 (Mean ± SE) in July and (0.22 ± 0.0090) mgCO2 · m−2 · s−1 in August, respectively. The averaged diurnal variation showed a single-peaked pattern in the growing season, but exhibited very small fluctuation in the non-growing season. Net ecosystem exchange (NEE) and gross primary production (GPP) were all correlated with some meteorological factors, and they showed a negatively linear correlation with aboveground biomass, while a positive correlation existed between the ecosystem respiration (Res) and those factors.  相似文献   

12.
Analysis of relationship between soil respiration and environmental factors has become essential for understanding changes in ecosystem carbon cycles under global warming. However, rough predictions have been made that soil respiration will increase with increasing temperature, but long-term data to support this theory were scarce. We measured soil respiration and environmental factors continuously using an automatic open-closed chamber system in a Korean cool-temperate forest from 2004 to 2016 to ascertain the reliability of this prediction and to more accurately predict changes in carbon cycle. Average air and soil temperatures were 11.0°C and 10.2°C. The increase in temperature was greater in winter (the inactive period for soil respiration) than in summer (the active period). Additionally, precipitation decreased sharply because of patter changes in 2012, and through 2016, it was approximately 69% of the previous period. Effect of precipitation on soil respiration was expected to be larger than temperature because the change in precipitation appeared in summer. Soil respiration exhibited a significant decline in 2012 because of precipitation. From 2004 to 2011, it averaged 344.4?mgCO2?m?2?h?1 and from 2012 to 2016 the average was 205.3?mgCO2?m?2?h?1. This phenomenon hasn’t been detected in short-term studies, suggesting that the prediction of previous studies is inaccurate. Additionally, to predict future ecosystem carbon cycle changes in a cool-temperate monsoon climate, changes in precipitation pattern should be regarded as equally important to temperature, and the prediction cannot be based solely on temperature. Therefore, long-term and continuous measurements are needed with consideration of the effects of both precipitation and temperature.

Abbreviations: Rs: soil respiration; Ts: soil temperature; Ta: air temperature; AOCC: automatic open/closed chamber  相似文献   

13.
亚热带沟叶结缕草草坪土壤呼吸   总被引:3,自引:1,他引:2  
随城市化进程加速,城市草坪生态系统释放CO2将对区域碳循环产生重要影响。采用LI-8100开路式土壤碳通量测量系统对亚热带沟叶结缕草草坪(Zoysia matrella)土壤呼吸进行为期1a的定位研究,结果表明:草坪土壤呼吸季节动态呈现为单峰曲线,全年土壤呼吸速率的变化范围在38.99—368.50 mg C?m-2?h-1之间,年通量为1684 g C?m-2?a-1。土壤温度、总生物量、以及二者的交互作用对土壤呼吸季节变化的解释程度接近,分别为89%、88%和90%,但仅二者的交互作用进入土壤呼吸的逐步回归方程,表明草坪土壤呼吸的季节变化主要受土壤温度与总生物量共同驱动。春末修剪草坪对土壤呼吸速率没有显著影响。在秋末无雨时期,浇水后1—2d土壤湿度对土壤呼吸的促进作用可掩盖同期降温的影响,使土壤呼吸速率显著升高。  相似文献   

14.
施肥方式对紫色土土壤异养呼吸的影响   总被引:2,自引:0,他引:2  
花可可  王小国  朱波 《生态学报》2014,34(13):3602-3611
采用静态暗箱-气相色谱法于2010年12月至2011年10月对不同施肥方式下的紫色土土壤呼吸进行了研究,以揭示施肥方式对紫色土异养呼吸的影响。结果表明:施肥可对土壤异养呼吸产生激发效应。施肥后第5天出现峰值,猪厩肥处理的异养呼吸峰值为2356.8 mg CO2m-2h-1,显著高于秸秆配施氮磷钾(970.1 mgCO2m-2h-1)和常规氮磷钾处理(406.8 mgCO2m-2h-1)(P0.01);小麦季常规氮磷钾、猪厩肥和秸秆配施氮磷钾处理的平均土壤异养呼吸速率为212.9、285.8和305.8mgCO2m-2h-1,CO2排放量为255.1、342.3和369.5 gC/m2,玉米季为408.2、642.8和446.4 mgCO2m-2h-1,CO2排放量为344.7、542.8和376.9 gC/m2,玉米季土壤异养呼吸平均速率及CO2排放量均高于小麦季。全年平均土壤异养呼吸速率分别为310.6、446.3和377.4 mg CO2m-2h-1,CO2排放总量分别为599.8、885.1和746.4 gC/m2。猪厩肥对土壤异养呼吸速率和CO2排放量的影响最大,秸秆配施氮磷钾肥次之,氮磷钾肥最小,说明有机物料的投入是紫色土土壤异养呼吸速率的主要调控措施,低碳氮比的有机物料能促进土壤异养呼吸和CO2的排放。猪厩肥和秸秆配施氮磷钾肥处理相应地表和地下5 cm温度的Q10值分别为2.64、1.88和2.77、1.99,表明低碳氮比的有机物料还能增加土壤异养呼吸Q10值,使土壤异养呼吸速率对温度的敏感性加强。  相似文献   

15.
Wang J  Sha L Q  Li J Z  Feng Z L 《农业工程》2008,28(8):3574-3583
Soil carbon stored on the Tibetan Plateau appears to be stable under current temperature, but it may be sensitive to global warming. In addition, different grazing systems may alter carbon emission from subalpine meadow ecosystems in this region. Using a chamber-closed dynamic technique, we measured ecosystem respiration (ER) and soil respiration (SR) rates with an infrared gas analyzer on a perennial grazing meadow (PM) and a seasonal grazing meadow (SM) of Shangri-La in the Hengduan Mountain area. Both PM and SM showed strong unimodal seasonal variations, with the highest rates in July and the lowest in January. Significant diurnal variations in respiration were also observed on PM, affected mainly by air and soil temperatures, with the highest rates at 14:00 and the lowest before dawn. Both ER and SR rates were higher on PM than on SM from June to October, suggesting that the higher grazing pressure on PM increased respiration rates on subalpine meadows. The exponential model F = aebT<,/sup> of soil temperature (T) explained the variation in respiration better than the model of soil moisture (W) (R2 = 0.50–0.78, P < 0.0001), while the multiple model F = aebT<,/sup>Wc gave better simulations than did single-factor models (R2 = 0.56–0.89, P < 0.0001). Soil respiration was the major component of ER, accounting for 63.0%–92.7% and 47.5%–96.4% of ER on PM and SM, respectively. Aboveground plant respiration varied with grass growth. During the peak growing season, total ecosystem respiration may be dominated by this above-ground component. Long-term (annual) Q10 values were about twice as large as short-term (one day) Q10. Q10 at different time scales may be controlled by different ecological processes. The SM had a lower long-term Q10 than did the PM, suggesting that under increased temperature, soil carbon may be more stable with reduced grazing pressure.  相似文献   

16.
中国东部亚热带森林土壤呼吸的时空格局   总被引:1,自引:0,他引:1       下载免费PDF全文
土壤呼吸是陆地碳循环中仅次于全球总初级生产力的第二大碳通量途径, 揭示土壤呼吸的时空格局对整个陆地碳循环具有重要意义。该文在中国东部亚热带季风气候区, 按纬度梯度由南向北选取深圳梧桐山、杨东山十二度水保护区、宁波天童山3个区域作为研究对象, 于2009年8月至2010年10月测定了不同季节各个区域内代表性植被类型的土壤呼吸速率及地下5 cm处土壤温度, 旨在初步了解中国东部亚热带森林地区土壤呼吸的时空格局及其影响因素。结果显示: 3个区域的土壤呼吸速率均存在显著的季节变化, 其变幅为2.64-6.24 μmol CO2·m -2·s-1, 总体趋势和地下5 cm处土壤温度的季节变化一致, 均为夏季最高冬季最低; 土壤温度的变化可以解释不同样地土壤呼吸季节变化的58.3%-90.2%; 各样地全年的Q10值从1.56到3.27; 通过离样地最近的气象站点的日平均气温与试验样地地下5 cm处土壤温度之间的线性正相关关系推算出日土壤温度的变化, 利用土壤呼吸速率和地下5 cm处土壤温度之间的指数关系, 估算出各样地全年的土壤CO2通量为1 077-2 058 g C·m-2·a-1, 在全球所有生态系统类型中处于较高水平。  相似文献   

17.
The spatial and temporal variations of soil respiration were studied from May 2004 to June 2005 in a C3/C4 mixed grassland of Japan. The linear regression relationship between soil respiration and root biomass was used to determine the contribution of root respiration to soil respiration. The highest soil respiration rate of 11-54 Μmol m-2 s-1 was found in August 2004 and the lowest soil respiration rate of 4.99 Μmol m-2 s-1 was found in April 2005. Within-site variation was smaller than seasonal change in soil respiration. Root biomass varied from 0.71 kg m-2 in August 2004 to 102 in May 2005. Within-site variation in root biomass was larger than seasonal variation. Root respiration rate was highest in August 2004 (5.7 Μmol m-2 s-1) and lowest in October 2004 (1.7 Μmol m-2 s-1). Microbial respiration rate was highest in August 2004 (5.8 Μmol m-2 s-1) and lowest in April 2005 (2.59 Μmol m-2 s-1). We estimated that the contribution of root respiration to soil respiration ranged from 31% in October to 51% in August of 2004, and from 45% to 49% from April to June 2005.  相似文献   

18.
青藏高原高寒草甸土壤CO2排放对模拟氮沉降的早期响应   总被引:5,自引:0,他引:5  
研究大气氮沉降输入对青藏高原高寒草甸土壤-大气界面CO2交换通量的影响,对于准确评价全球变化背景下区域碳平衡至关重要。通过构建多形态、低剂量的增氮控制试验,利用静态箱-气相色谱法测定土壤CO2排放通量,同时测定相关土壤变量和地上生物量,分析高寒草甸土壤CO2排放特征及其主要驱动因子。研究结果表明:低、高剂量氮输入倾向于消耗土壤水分,而中剂量氮输入有利于土壤水分的保持;施氮初期总体上增加了土壤无机氮含量,铵态氮累积效应更为显著;施氮显著增加地上生物量和土壤CO2排放通量,铵态氮的促进效应显著高于硝态氮。另外,土壤CO2排放通量主要受土壤温度驱动,其次为地上生物量和铵态氮储量。上述结果反映了氮沉降输入短期内可能刺激了植物生长和土壤微生物活性,加剧了土壤-大气界面CO2排放。  相似文献   

19.
青藏高原高寒湿地生态系统CO2通量   总被引:1,自引:1,他引:0  
依据涡度相关系统连续观测的2005年CO2通量数据,对青藏高原东北隅的高寒湿地生态系统源/汇功能及其部分环境影响因素进行了分析.结果表明,高寒湿地生态系统为明显的碳源,在植物生长季(5~9月份)吸收230.16 gCO2·m-2,非生长季(1~4月份及10~12月份)释放546.18 gCO2·m-2,其中净排放最高在5月份,为181.49 gCO2·m-2,净吸收最高在8月份,为189.69 gCO2·m-2,年释放量为316.02 gCO2·m-2.在平均日变化中,最大吸收值出现在7月份12:00,为(0.45±0.0012) mgCO2·m-2·s-1,最大排放速率出现在8月份0:00,为(0.22±0.0090) mgCO2·m-2·s-1.生长季中6~9月份表现为明显的单峰型日变化,非生长季的变化幅度较小.净生态系统交换量(NEE)和生态系统总初级生产力(GPP)与气温、空气水气饱和亏和地表反射率等环境因素呈现相似的相关性,与地上生物量和群落叶面积指数则为线性负相关,生态系统呼吸(Res)则与上述因子的相关性呈现相反的趋势.  相似文献   

20.
A multichannel automated chamber system was developed for continuous monitoring of CO2 exchange at multiple points between agro-ecosystem or soil and atmosphere. This system consisted of an automated chamber subsystem with a CO2 concentration analyzer and a data logging subsystem. Both subsystems were under the control of a programmable logic controller (PLC). The automated chamber subsystem contained 18 chambers (50 cm × 50 cm × 50 cm) and a compressor. The chamber lids were closed and can be automatically opened. During measurement, one of the 18 chambers was kept closed for three minutes for measuring and the other chambers were kept open to maintain the natural soil conditions to the maximum extent. Environmental variables were simultaneously measured using sensors and recorded by the data logger. The reliability of the multichannel automated chamber system was tested and the results showed that the turbulence of the fans had no significant effect on the CO2 exchange. The changes in the air and the temperature of soil and soil moisture inside the chambers, caused by the enclosure of the chambers, were not significant. The net ecosystem CO2 exchange for the wheat ecosystem was ?2.35 μmol·m?2·s>?1 and the soil respiration was 3.87 μmol·m?2·s>?1 in the wheat field, and 6.61 μmol·m?2·s>?1 in the apple orchard.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号