首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   2篇
  国内免费   11篇
  2018年   1篇
  2017年   2篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2012年   3篇
  2011年   1篇
  2009年   1篇
  2004年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
增氮对青藏高原东缘高寒草甸土壤甲烷吸收的早期影响   总被引:1,自引:0,他引:1  
研究大气氮沉降对青藏高原高寒草甸土壤CH4吸收的影响,对于揭示氮素调节土壤CH4吸收的机制和评价氮沉降增加背景下大气CH4收支平衡至关重要.通过构建多形态、低剂量的增氮控制试验,测定土壤CH4净交换通量和相关土壤理化性质,分析高寒草甸土壤CH4通量变化特征及其主要驱动因子.研究结果表明:自然状态下高寒草甸土壤是大气CH4汇,CH4平均吸收量为(35.40±1.92) μg· m-2· h-1.土壤CH4吸收主要受水分驱动,其次为土壤NH4+-N和NO3-N含量.NH4+-N抑制CH4吸收,NO3--N促进CH4吸收;不同剂量氮素输入对土壤CH4吸收影响也不尽相同,低氮处理促进土壤CH4吸收,而中氮和高氮处理抑制土壤CH4吸收.结果显示青藏高原高寒草甸土壤是重要的大气CH4汇,在未来大气氮沉降加倍的情景下CH4汇功能增强,但当氮沉降量增加两倍以上时CH4汇功能将会减弱.  相似文献   
2.
温带针阔混交林土壤碳氮气体通量的主控因子与耦合关系   总被引:3,自引:0,他引:3  
中高纬度森林地区由于气候条件变化剧烈,土壤温室气体排放量的估算存在很大的不确定性,并且不同碳氮气体通量的主控因子与耦合关系尚不明确。以长白山温带针阔混交林为研究对象,采用静态箱-气相色谱法连续4a(2005—2009年)测定土壤二氧化碳(CO2)、甲烷(CH4)和氧化亚氮(N2O)净交换通量以及温度、水分等相关环境因子。研究结果表明:温带针阔混交林土壤整体上表现为CO2和N2O的排放源和CH4的吸收汇。土壤CH4、CO2和N2O通量的年均值分别为-1.3 kg CH4hm-2a-1、15102.2 kg CO2hm-2a-1和6.13 kg N2O hm-2a-1。土壤CO2通量呈现明显的季节性规律,主要受土壤温度的影响,水分次之;土壤CH4通量的季节变化不明显,与土壤水分显著正相关;土壤N2O通量季节变化与土壤CO2通量相似,与土壤水分、温度显著正相关。土壤CO2通量和CH4通量不存在任何类型的耦合关系,与N2O通量也不存在耦合关系;土壤CH4和N2O通量之间表现为消长型耦合关系。这项研究显示温带针阔混交林土壤碳氮气体通量主要受环境因子驱动,不同气体通量产生与消耗之间存在复杂的耦合关系,下一步研究需要深入探讨环境变化对其耦合关系的影响以及内在的生物驱动机制。  相似文献   
3.
水分非饱和的森林土壤是大气甲烷(CH4)汇和氧化亚氮(N2O)源,大气氮沉降增加是导致森林土壤碳氮气体通量不平衡的主要原因之一。土壤CH4吸收和N2O排放之间存在协同、消长和随机等复杂的耦合关系,关于氮素对两者产生过程的调节作用以及内在的微生物学机制至今尚不完全清楚。综述了森林土壤CH4吸收和N2O排放耦合过程的理论基础,土壤CH4和N2O的产生与消耗过程对增氮响应的生物化学和微生物学机制,指出各研究领域的不足和未来的研究重点。总体而言,低氮倾向于促进贫氮森林土壤CH4吸收,不改变土壤N2O的排放,而高氮显著抑制富氮森林土壤CH4吸收以及促进N2O排放。外源性氮素通过竞争抑制和毒性抑制来调控森林土壤CH4的吸收,而通过促进土壤硝化和反硝化过程来增加N2O的排放。然而,由于全球氮沉降控制试验网络分布的不均匀性、土壤碳氮通量产生过程的复杂性以及微生物分子生态学方法的局限性等原因,导致氮素对森林土壤碳氮通量的调控机制研究一直进展缓慢,未能将微生物功能群落动态与土壤碳氮通量真正地联系起来。未来研究应该从流域、生态系统和分子尺度上深入探讨土壤碳氮通量耦合作用的环境驱动机制,氮素对土壤CH4氧化和N2O产生过程的调控作用,以及增氮对土壤甲烷氧化菌和N2O产生菌活性和群落组成的影响。  相似文献   
4.
氮素类型和剂量对寒温带针叶林土壤N2O排放的影响   总被引:1,自引:0,他引:1  
大气氮沉降输入会增加森林生态系统氮素有效性,进而改变土壤N_2O产生与排放,然而有关不同氮素离子(氧化态NO_3~--N与还原态NH_4~+-N)沉降对土壤N_2O排放的影响知之甚少。以大兴安岭寒温带针叶林为研究对象,构建了3种类型(NH_4Cl、KNO_3、NH_4NO_3)和4个施氮水平(0、10、20、40 kg N hm~(-2)a~(-1))的增氮控制试验,利用流动化学分析仪和静态箱-气相色谱法4次/月测定凋落物层和矿质层土壤无机氮含量、土壤-大气界面N_2O净交换通量以及相关环境因子,分析施氮类型和剂量对土壤氮素有效性、土壤N_2O通量的影响探讨氮素富集条件下土壤N_2O通量的环境驱动机制。结果表明:施氮类型和剂量均显著影响土壤无机氮含量,土壤NH_4~+-N的积累效应显著高于NO_3~--N。施氮一致增加寒温带针叶林土壤N_2O排放,NH_4NO_3促进效应最为明显,增幅为442%-677%,高于全球平均水平(134%)。土壤N_2O通量与土壤温度、凋落物层NH_4~+-N含量正相关,且随着施氮水平增加而增加。结果表明大气氮沉降短期内不会导致寒温带针叶林土壤NO_3~--N大量流失,但会显著促进土壤N_2O的排放。此外,外源性NH_4~+和NO_3~-输入对土壤N_2O排放的促进作用具有协同效应,在未来森林生态系统氮循环和氮平衡研究中应该区分对待。  相似文献   
5.
N沉降作为驱动因子会改变森林土壤-大气界面CH4净交换通量和方向。然而,对引起北方森林土壤CH4吸收发生转变的大气N沉降临界负荷及其响应机制知之甚少。为此,本研究以我国大兴安岭北方寒温带针叶林土壤作为研究对象,参照大兴安岭站实际大气N沉降通量,构建了低剂量、多形态和高频率的大气N沉降模拟增加控制实验,研究了2010年6-10月生长季土壤CH4吸收通量及其驱动因子对增N的初期响应。研究表明:整个生长季,大兴安岭寒温带针叶林土壤作为大气CH4净汇,CH4平均吸收通量为51.5?4.70 ugm-2h-1,主要受0-10cm土壤水分驱动。短期内,0-10cm矿质土壤NH4 -N含量对增N响应敏感;0-10cm矿质土壤NO3--N含量则受NO3--N输入影响较为明显。相反,0-10cm矿质土壤pH对增N的响应不敏感。总体上,低剂量的N输入对大兴安岭寒温带针叶林生长季土壤-大气界面CH4净交换通量影响不显著,而不排除NO3--N 输入尤其是低N处理情形所呈现出促进土壤CH4氧化的趋势。大兴安岭寒温带针叶林土壤CH4吸收对增N的响应敏感程度可能和土壤CH4活性氧化区域,土壤NH4 -N、NO3--N含量空间分布格局和相对比例有关。未来长期低水平的大气N沉降是否会改变大兴安岭北方森林土壤氧化大气CH4趋势,有待研究。  相似文献   
6.
对一株黑曲霉菌固态发酵产β-葡萄糖苷酶的产酶条件进行了优化.通过单因素实验考察了不同碳源、氮源、固液比、诱导剂及产酶时间等6 种因素对产β-葡萄糖苷酶的影响.在单因素的基础上,进行了五因素四水平正交实验.结果表明,在培养基组分中秸秆与麦麸的比例为3:3,固液比为1:3,氮源为3% 硝酸铵,发酵时间为5d,采用CMCNa 作为诱导剂时得到的β-葡萄糖苷酶活力最高,可达40.06 U/g.  相似文献   
7.
程淑兰  方华军  徐梦  耿静  何舜  于光夏  曹子铖 《生态学报》2018,38(23):8285-8295
大气氮沉降增加倾向于促进受氮限制陆地生态系统地上生物量,但是对地下碳过程和土壤碳截存的影响结果迥异,导致陆地生态系统“氮促碳汇”的评估存在很大的不确定性。大气氮沉降输入直接影响微生物活性或间接影响底物质量,改变凋落物和土壤有机质(SOM)的分解速率和分解程度,进而影响土壤有机碳(SOC)的积累与损耗过程。过去相关研究主要集中在土壤碳转化过程和碳储量动态方面,缺乏植物-微生物-SOM交互作用的理解,对土壤碳截存调控的生物化学和微生物学机理尚不清楚。本文以地下碳循环过程为主线,分别综述了氮沉降增加对植物地下碳分配、SOC激发效应、微生物群落碳代谢过程的影响,深入分析SOM化学稳定性与微生物群落动态的关系。该领域研究的薄弱环节体现在:(1)增氮倾向于降低根系的生长和周转,对根际沉积碳分配(数量和格局)的影响及驱动因素不明确;(2)虽然认识到氮素有效性影响土壤激发效应的方向和强度,但是氧化态NO-3和还原态NH+4输入对有机质激发效应的差异性影响及潜在机理知之甚少;(3)微生物碳利用效率(CUE)是微生物群落碳代谢的关键表征,能够很好地解释土壤碳的积累与损耗过程;由于缺乏适宜的测定方法,难以准确量化土壤微生物的CUE及微生物生物量的周转时间;(4)增氮会抑制土壤真菌群落及其胞外酶活性,对细菌群落组成的影响尚未定论,有关SOM化学质量与土壤微生物群落活性、组成之间的耦合关系尚不清楚。未来研究应基于长期的氮添加控制实验平台,结合碳氧稳定性同位素示踪、有机质化学、分子生物学和宏基因组学等方法,深入分析植物同化碳的地下分配规律、微生物碳代谢和周转、有机质化学结构与功能微生物群落的耦合关系等关键环节。上述研究将有助于揭示植物-土壤-微生物交互作用对SOC动态的调控机制,完善陆地生态系统碳-氮耦合循环模型,有效降低区域陆地碳汇评估的不确定性,并可为陆地生态系统应对全球变化提供科学依据。  相似文献   
8.
增氮对青藏高原东缘典型高寒草甸土壤有机碳组成的影响   总被引:2,自引:0,他引:2  
土壤有机碳动态是陆地生态系统碳平衡研究的关键环节,有关青藏高原高寒草甸土壤有机碳组成对大气氮沉降增加的响应研究至今尚未开展。基于中国科学院海北生态站的大气氮沉降模拟控制实验平台,于2010年5月、7月和9月中旬分别测定不同施氮处理下0—10cm、10—20cm、20—30cm土壤中粗颗粒态有机碳(CPOC)、细颗粒态有机碳(FPOC)和矿质结合有机碳(MOC)含量,研究不同施氮类型(NH4Cl,(NH4)2SO4和KNO3)和施氮水平(0、10、20、40 kgN.hm-.2a-1)对土壤POC和MOC含量以及POC/MOC比值的影响。结果表明:青藏高原高寒草甸土壤POC积聚在土壤表层,占总土壤有机碳(SOC)含量的64%以上,稳定性较差。施氮水平显著改变了土壤CPOC、FPOC和MOC含量,而施氮类型的影响不显著。不同月份土壤POC和MOC含量对增氮的响应不同,反映了SOC组分对增氮响应的时间异质性。在生长季中期,施氮倾向于增加表层土壤POC含量,而在生长季初期和末期恰好相反。土壤MOC对增氮的响应不敏感。另外,施氮显著降低生长季初期表层土壤POC/MOC比例,SOC稳定性增加。表明,青藏高原高寒草甸土壤有机碳活性组分较高,未来大气氮沉降增加短期内即可降低活性有机碳含量,相应地改变了其组成和稳定性。  相似文献   
9.
青藏高原高寒草甸土壤CO2排放对模拟氮沉降的早期响应   总被引:5,自引:0,他引:5  
研究大气氮沉降输入对青藏高原高寒草甸土壤-大气界面CO2交换通量的影响,对于准确评价全球变化背景下区域碳平衡至关重要。通过构建多形态、低剂量的增氮控制试验,利用静态箱-气相色谱法测定土壤CO2排放通量,同时测定相关土壤变量和地上生物量,分析高寒草甸土壤CO2排放特征及其主要驱动因子。研究结果表明:低、高剂量氮输入倾向于消耗土壤水分,而中剂量氮输入有利于土壤水分的保持;施氮初期总体上增加了土壤无机氮含量,铵态氮累积效应更为显著;施氮显著增加地上生物量和土壤CO2排放通量,铵态氮的促进效应显著高于硝态氮。另外,土壤CO2排放通量主要受土壤温度驱动,其次为地上生物量和铵态氮储量。上述结果反映了氮沉降输入短期内可能刺激了植物生长和土壤微生物活性,加剧了土壤-大气界面CO2排放。  相似文献   
10.
森林土壤甲烷吸收的主控因子及其对增氮的响应研究进展   总被引:3,自引:0,他引:3  
森林土壤甲烷(CH4)吸收在生态系统碳、氮循环和碳平衡研究中具有重要作用。论述了森林土壤CH4的产生和消耗过程及其主控因子,有效氮不同的森林土壤CH4吸收对氮素输入的响应差异及其驱动机制,并且明确了现有研究的不足和未来研究的重点。研究表明:大气氮沉降输入倾向于抑制富氮森林土壤的CH4吸收,而对贫氮森林土壤CH4吸收具有显著的促进作用,其内在的氮素调控机制至今尚不明确。主要的原因是过去通过高剂量施氮试验所得出的理论难以准确地解释低水平氮沉降情景下森林土壤CH4吸收过程,有关森林土壤CH4吸收对大气氮沉降响应的微生物学机理也缺乏系统性研究。未来研究的重点是探讨森林土壤CH4物理扩散和净吸收过程对施氮类型、剂量的短期与长期响应,量化深层土壤CH4累积和消耗对表层土壤CH4吸收的贡献,揭示森林土壤CH4吸收对增氮响应的物理学与生物化学机制。另外,研究森林土壤甲烷氧化菌群落活性、结构对施氮类型和剂量的响应,阐明土壤CH4吸收与甲烷氧化菌群落组成的内在联系,有助于深入揭示森林土壤CH4吸收对增氮响应的微生物学机制。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号