首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
IgG1 b12 is a broadly neutralizing antibody against human immunodeficiency virus type 1 (HIV-1). The epitope recognized by b12 overlaps the CD4 receptor-binding site (CD4bs) on gp120 and has been a target for vaccine design. Determination of the three-dimensional structure of immunoglobulin G1 (IgG1) b12 allowed modeling of the b12-gp120 interaction in which the protruding third complementarity-determining region (CDR) of the heavy chain (H3) was crucial for antibody binding. In the present study, extensive mutational analysis of the antigen-binding site of Fab b12 was carried out to investigate the validity of the model and to identify residues important for gp120 recognition and, by inference, key to the anti-HIV-1 activity of IgG1 b12. In all, 50 mutations were tested: 40 in H3, 4 each in H2 and L1, and 2 in L3. The results suggest that the interaction of gp120 with H3 of b12 is crucially dependent not only on a Trp residue at the apex of the H3 loop but also on a number of residues at the base of the loop. The arrangement of these residues, including aromatic side chains and side chains that hydrogen bond across the base of the loop, may rigidify H3 for penetration of the recessed CD4-binding cavity. The results further emphasize the importance to gp120 binding of a Tyr residue at the apex of the H2 loop that forms a second finger-like structure and a number of Arg residues in L1 that form a positively charged, shelf-like structure. In general, the data are consistent with the b12-gp120 interaction model previously proposed. At the gene level, somatic mutation is seen to be crucial for the generation of many of the structural features described. The Fab b12 mutants were also tested against the b12 epitope-mimic peptide B2.1, and the reactivity profile had many similarities but also significant differences from that observed for gp120. The paratope map of b12 may facilitate the design of molecules that are able to elicit b12-like activities.  相似文献   

2.
Sulfated tyrosines at the amino terminus of the principal HIV-1 coreceptor CCR5 play a critical role in its ability to bind the HIV-1 envelope glycoprotein gp120 and mediate HIV-1 entry. Human antibodies that recognize the CCR5-binding region of gp120 are also modified by tyrosine sulfation, which is necessary for their ability to neutralize HIV-1. Here we demonstrate that a sulfated peptide derived from the CDR3 region of one of these antibodies, E51, can efficiently bind gp120. Association of this peptide, pE51, with gp120 requires tyrosine sulfation and is enhanced by, but not dependent on, CD4. Alteration of any of four pE51 tyrosines, or alteration of gp120 residues 420, 421, or 422, critical for association with CCR5, prevents gp120 association with pE51. pE51 neutralizes HIV-1 more effectively than peptides based on the CCR5 amino terminus and may be useful as a fusion partner with other protein inhibitors of HIV-1 entry. Our data provide further insight into the association of the CCR5 amino terminus with gp120, show that a conserved, sulfate-binding region of gp120 is accessible to inhibitors in the absence of CD4, and suggest that soluble mimetics of CCR5 can be more effective than previously appreciated.  相似文献   

3.
The human monoclonal antibody 2F5 neutralizes primary human immunodeficiency virus type 1 (HIV-1) with rare breadth and potency. A crystal structure of a complex of 2F5 and a peptide corresponding to its core epitope on gp41, ELDKWAS, revealed that the peptide interacts with residues at the base of the unusually long (22-residue) third complementarity-determining region of the heavy chain (CDR H3) but not the apex. Here, we perform alanine-scanning mutagenesis across CDR H3 and make additional substitutions of selected residues to map the paratope of Fab 2F5. Substitution of residues from the base of the H3 loop or from CDRs H1, H2, and L3, which are proximal to the peptide, significantly diminished the affinity of Fab 2F5 for gp41 and a short peptide containing the 2F5 core motif. However, nonconservative substitutions to a phenylalanine residue at the apex of the H3 loop also markedly decreased 2F5 binding to both gp41 and the peptide, suggesting that recognition of the core epitope is crucially dependent on features at the apex of the H3 loop. Furthermore, substitution at the apex of the H3 loop had an even more pronounced effect on the neutralizing activity of 2F5 against three sensitive HIV-1. These observations present a challenge to vaccine strategies based on peptide mimics of the linear epitope.  相似文献   

4.
Six recombinant human Fab fragments that were derived from the same human immunodeficiency virus type 1 (HIV-1)-infected individual and are directed against the CD4 binding site (CD4bs) of the gp120 envelope glycoprotein were studied. A range of neutralizing activity against the HIV-1 (HXBc2) isolate was observed, with Fab b12 exhibiting the greatest potency among the Fabs tested. The neutralizing potency of Fab b12 was better than that of monoclonal whole antibodies directed against the third variable (V3) region of gp120. To explore the basis for the efficient neutralizing activity of b12, the recognition of a panel of HIV-1 gp120 mutants by the six Fabs was studied. The patterns of sensitivity to particular gp120 amino acid changes were similar for all six Fabs to those seen for anti-CD4bs monoclonal antibodies derived from HIV-1-infected individuals by conventional means. In addition, recognition by Fab b12 demonstrated an atypical sensitivity to changes in the V1 and V2 variable regions. Next, the binding of the Fabs to monomeric gp120 and to the envelope glycoprotein complex was examined. Neither the binding properties of the b12 Fab to monomeric gp120 nor the ability of the Fab to compete with soluble CD4 for monomeric gp120 binding appeared to account for the greater neutralizing potency. However, both quantitative and qualitative differences between the binding of b12 and that of less potent Fabs to the cell surface envelope glycoprotein complex were observed. Relative to less potently neutralizing Fabs, Fab b12 exhibited a higher affinity for a subpopulation of cell surface envelope glycoproteins, the conformation of which was best approximated by the mature gp120 glycoprotein. Apparently, subtle differences in the gp120 epitope recognized allow some members of the group of anti-CD4bs antibodies to bind to the functionally relevant envelope glycoprotein complex and to neutralize virus more efficiently.  相似文献   

5.
Anti-human immunodeficiency virus type 1 (HIV-1) antibodies whose binding to gp120 is enhanced by CD4 binding (CD4i antibodies) are generally considered nonneutralizing for primary HIV-1 isolates. However, a novel CD4i-specific Fab fragment, X5, has recently been found to neutralize a wide range of primary isolates. To investigate the precise nature of the extraordinary neutralizing ability of Fab X5, we evaluated the abilities of different forms (immunoglobulin G [IgG], Fab, and single-chain Fv) of X5 and other CD4i monoclonal antibodies to neutralize a range of primary HIV-1 isolates. Our results show that, for a number of isolates, the size of the neutralizing agent is inversely correlated with its ability to neutralize. Thus, the poor ability of CD4i-specific antibodies to neutralize primary isolates is due, at least in part, to steric factors that limit antibody access to the gp120 epitopes. Studies of temperature-regulated neutralization or fusion-arrested intermediates suggest that the steric effects are important in limiting the binding of IgG to the viral envelope glycoproteins after HIV-1 has engaged CD4 on the target cell membrane. The results identify hurdles in using CD4i epitopes as targets for antibody-mediated neutralization in vaccine design but also indicate that the CD4i regions could be efficiently targeted by small molecule entry inhibitors.  相似文献   

6.
This paper describes a branched synthetic peptide [3.7] that incorporates sequence discontinuous residues of HIV-1 gp120 constant regions. The approach was to bring together residues of gp120 known to interact with human cell membranes such that the peptide could fold to mimic the native molecule. The peptide incorporates elements of both the conserved CD4 and CCR5 binding sites. The 3.7 peptide, which cannot be produced by conventional genetic engineering methods, is recognized by antiserum raised to native gp120. The peptide also binds to CD4 and competitively inhibits binding of QS4120 an antibody directed against the CDR2 region of CD4. When preincubated with the CD4+ve MM6 macrophage cell line, which expresses mRNA for the CCR3 and CCR5 chemokine receptors, both 3.7 and gp120 inhibit binding of the chemokine MIP-1alpha. The peptide also inhibits infection of primary macrophages by M-tropic HIV-1. Thus, 3.7 is a prototype candidate peptide for a vaccine against HIV-1 and represents a novel approach to the rational design of peptides that can mimic complex sequence discontinuous ligand binding sites of clinically relevant proteins.  相似文献   

7.
The binding properties of seven CD4-blocking monoclonal antibodies raised against recombinant gp120 of human immunodeficiency virus type 1 strain MN (HIV-1MN) and two CD4-blocking monoclonal antibodies to recombinant envelope glycoproteins gp120 and gp160 of substrain IIIB of HIVLAI were analyzed. With a panel of recombinant gp120s from seven diverse HIV-1 isolates, eight of the nine antibodies were found to be strain specific and one was broadly cross-reactive. Epitope mapping revealed that all nine antibodies bound to epitopes located in the fourth conserved domain (C4) of gp120. Within this region, three distinct epitopes could be identified: two were polymorphic between HIV-1 strains, and one was highly conserved. Studies with synthetic peptides demonstrated that the conserved epitope, recognized by antibody 13H8, was located between residues 431 and 439. Site-directed mutagenesis of gp120 demonstrated that residue 429 and/or 432 was critical for the binding of the seven antibodies to gp120 from HIV-1MN. Similarly, residues 423 and 429 were essential for the binding of monoclonal antibody 5C2 raised against gp120 from HIV-1IIIB. The amino acids located at positions 423 and 429 were found to vary between strains of HIV-1 as well as between molecular clones derived from the MN and LAI isolates of HIV-1. Polymorphism at these positions prevented the binding of virus-neutralizing monoclonal antibodies and raised the possibility that HIV-1 neutralization serotypes may be defined on the basis of C4 domain sequences. Analysis of the binding characteristics of the CD4-blocking antibodies demonstrated that their virus-neutralizing activity was directly proportional to their gp120-binding affinity. These studies account for the strain specificity of antibodies to the C4 domain of gp120 and demonstrate for the first time that antibodies to this region can be as effective as those directed to the principal neutralizing determinant (V3 domain) in neutralizing HIV-1 infectivity.  相似文献   

8.
Benzylated derivatives of a peptide (CD4(81-92)) representing the CDR3-like region of CD4 were previously found to inhibit gp120 binding, HIV-1 infectivity, and syncytium formation. These results have been interpreted to indicate a role for the corresponding CD4 region in these processes. The peptide (TbYICbEbVEDQKAcEE) is the prototype of a series of similar CD4(81-92) derivatives. We report that this peptide noncompetitively inhibits binding to CD4 of both gp120 and a mAb (MAX.16H5), both of which recognize the CDR2-like region of CD4. The binding of an antibody (Leu 3a) that is directed against a different area of the D1 domain of CD4 was also inhibited. The peptide derivative inhibited both HIV-1- and HTLV-1-mediated syncytium formation in the same concentration range. Nonbenzylated cyclic and linear peptides representing the CDR3-like region of CD4 (CD4(84-101)) had only minor effects on gp120 binding which were not sequence specific. The results of this study suggest that the effects of benzylated CD4(81-92) derivatives on HIV-1 binding or fusion should not be used to reach conclusions about the function of the corresponding CD4 region.  相似文献   

9.
We have determined the crystal structure of the Fab fragment from F105, a broadly reactive human antibody with limited potency that recognizes the CD4 binding site of gp120. The structure reveals an extended CDR H3 loop with a phenylalanine residue at the apex and shows a striking pattern of serine and tyrosine residues. Modeling the interaction between gp120 and F105 suggests that the phenylalanine may recognize the binding pocket of gp120 used by Phe(43) of CD4 and that numerous tyrosine and serine residues form hydrogen bonds with the main chain atoms of gp120. A comparison of the F105 structure to that of immunoglobulin G1 b12, a much more potent and broadly neutralizing antibody with an overlapping epitope, suggests similarities that contribute to the broad recognition of human immunodeficiency virus by both antibodies. While the putative epitope for F105 shows significant overlap with that predicted for b12, it appears to differ from the b12 epitope in extending across the interface between the inner and outer domains of gp120. In contrast, the CDR loops of b12 appear to interact predominantly with the outer domain of gp120. The difference between the predicted epitopes for b12 and F105 suggests that the unique potency of b12 may arise from its ability to avoid the interface between the inner and outer domains of gp120.  相似文献   

10.
The human immunodeficiency virus type 1 (HIV-1) gp120 exterior glycoprotein is conformationally flexible. Upon binding the host cell receptor, CD4, gp120 assumes a conformation that is able to bind the chemokine receptors CCR5 or CXCR4, which act as coreceptors for the virus. CD4-binding-site (CD4BS) antibodies are neutralizing antibodies elicited during natural infection that are directed against gp120 epitopes that overlap the binding site for CD4. Recent studies (S. H. Xiang et al., J. Virol. 76:9888-9899, 2002) suggest that CD4BS antibodies recognize conformations of gp120 distinct from the CD4-bound conformation. This predicts that the binding of CD4BS antibodies will inhibit chemokine receptor binding. Here, we show that Fab fragments and complete immunoglobulin molecules of CD4BS antibodies inhibit CD4-independent gp120 binding to CCR5 and cell-cell fusion mediated by CD4-independent HIV-1 envelope glycoproteins. These results are consistent with a model in which the binding of CD4BS antibodies limits the ability of gp120 to assume a conformation required for coreceptor binding.  相似文献   

11.
Human immunodeficiency virus (HIV) entry into cells is initiated by the binding of its envelope glycoprotein (Env) gp120 to receptor CD4. Antibodies that bind to epitopes overlapping the CD4-binding site (CD4bs) on gp120 can prevent HIV entry by competing with cell-associated CD4; their ability to outcompete CD4 is a major determinant of their neutralizing potency and is proportional to their avidity. The breadth of neutralization and the likelihood of the emergence of antibody-resistant virus are critically dependent on the structure of their epitopes. Because CD4bs is highly conserved, it is reasonable to hypothesize that antibodies closely mimicking CD4 could exhibit relatively broad cross-reactivity and a high probability of preventing the emergence of resistant viruses. Previously, in a search for antibodies that mimic CD4 or the co-receptor, we identified and characterized a broadly cross-reactive HIV-neutralizing CD4bs human monoclonal antibody (hmAb), m18. Here, we describe the crystal structure of Fab m18 at 2.03 A resolution, which reveals unique conformations of heavy chain complementarity-determining regions (CDRs) 2 and 3 (H2 and H3). H2 is highly bulged and lacks cross-linking interstrand hydrogen bonds observed in all four canonical structures. H3 is 17.5 A long and rigid, forming an extended beta-sheet decorated with an alpha-turn motif bearing a phenylalanine-isoleucine fork at the apex. It shows striking similarity to the Ig CDR2-like C'C' region of the CD4 first domain D1 that dominates the binding of CD4 to gp120. Docking simulations suggest significant similarity between the m18 epitope and the CD4bs on gp120. Fab m18 does not enhance binding of CD4-induced (CD4i) antibodies, nor does it induce CD4-independent fusion mediated by the HIV Env. Thus, vaccine immunogens based on the m18 epitope structure are unlikely to elicit antibodies that could enhance infection. The structure can also serve as a basis for the design of novel, highly efficient inhibitors of HIV entry.  相似文献   

12.
A lambda phage expression methodology was adapted to dissect protein/ligand interactions efficiently through the creation and rapid screening of large numbers of mutants. Here we describe the method and its specific application to the interaction between the external envelope glycoprotein of the human immunodeficiency virus (HIV-1), gp120, and the human cell surface protein CD4. Random substitutions were introduced throughout the gp120 binding region (amino acids 38-62) in the amino-terminal domain of CD4 by oligonucleotide mutagenesis. These mutations were expressed within phage plaques and directly screened for their effect on binding of gp120 using a modified phage plaque lift procedure. Plaques showing increased, decreased, and no effect on binding were identified and mutations were verified by sequence analysis. In this manner, 25 unique mutations were identified that altered CD4 binding to gp120. A new site was identified at which mutations reduced binding to gp120 and several novel amino acid substitutions were defined at sites previously implicated in binding. Of particular interest, this in vitro genetic approach identified a mutation which significantly increased binding to gp120. The phenotypes of several of these mutants were further characterized by quantitative measurement of their binding affinity. The results confirmed the accuracy of the phenotypic selection and demonstrated that the sensitivity of the system allowed detection of a 3-4-fold increase or decrease in affinity. In the context of the recently determined atomic structure of CD4, these results further implicate residues in the CDR2-like region and in an adjacent loop in recognition of gp120. This methodology should be generally applicable to other high affinity protein/ligand interactions that are compatible with expression in Escherichia coli.  相似文献   

13.
447-52D is a human monoclonal antibody isolated from a heterohybridoma derived from an HIV-1-infected individual. This antibody recognizes the hypervariable gp120 V3 loop, and neutralizes both X4 and R5 primary isolates, making it one of the most effective anti-V3 antibodies characterized to date. The crystal structure of the 447-52D Fab in complex with a 16-mer V3 peptide at 2.5 A resolution reveals that the peptide beta hairpin forms a three-stranded mixed beta sheet with complementarity determining region (CDR) H3, with most of the V3 side chains exposed to solvent. Sequence specificity is conferred through interaction of the type-II turn (residues GPGR) at the apex of the V3 hairpin with the base of CDR H3. This novel mode of peptide-antibody recognition enables the antibody to bind to many different V3 sequences where only the GPxR core epitope is absolutely required.  相似文献   

14.
Various roles for the viral receptor, CD4, have been proposed in facilitating human immunodeficiency virus type 1 (HIV-1) entry, including virion binding to the target cell and the induction of conformational changes in the viral envelope glycoproteins required for the membrane fusion reaction. Here, we compare the structural requirements in the CDR2-like loop of CD4 domain 1, the major contact site of the gp120 envelope glycoprotein, for gp120 binding and virus entry. For every CD4 mutant examined, the level of cell surface expression and the gp120 binding affinity were sufficient to explain the relative ability to function as a viral receptor. The decrease in relative infectibility associated with decreased gp120 binding affinity was more pronounced at lower cell surface CD4 concentrations. These results imply that both receptor density and affinity determine the efficiency of HIV-1 entry and that specific structures in the CD4 residues examined are probably not required for HIV-1 entry functions other than gp120 binding.  相似文献   

15.
Peptide fragments of the CD4 molecule were compared in their ability to 1) inhibit CD4-dependent HIV-induced cell fusion; 2) inhibit CD4-dependent HIV infection in vitro; and 3) block gp120 envelope glycoprotein binding to CD4. Peptides from the region CD4(81-92), although inactive when underivatized, were equipotent inhibitors of CD4-dependent virus infection, cell fusion, and CD4/gp120 binding when derivatized via benzylation and acetylation. Peptides of identical chemical composition, but altered sequence and derivatization pattern that blocked gp120 binding to either CD4-positive cells or solubilized CD4, also blocked infection and fusion with similar potencies. Those that did not block gp120/CD4 interaction were also inactive in HIV-1 infection and cell fusion assays. No other peptide fragments of the CD4 molecule inhibited fusion, infection, or CD4/gp120 interaction. The peptide CD4(23-56), derived from a region of CD4 implicated in binding of CD4 antibodies that neutralize HIV infection and cell fusion, had no effect on CD4-dependent cell fusion, HIV-1 infection, or CD4/gp120 binding, but did reverse OKT4A and anti-Leu 3a blockade of gp120 binding to CD4. These data provide evidence that the 81-92 region of CD4 is directly involved in gp120 binding leading to CD4-dependent HIV infection and syncytium formation. Previous observations with structural mutants of CD4 suggest that the CDR2-homologous region of CD4 is also involved, either directly or indirectly, in binding of gp120 to CD4. The CDR2- and CDR3-like domains of CD4 may both contribute to the binding of the HIV envelope necessary for HIV-1 infection and HIV-1-induced cell fusion.  相似文献   

16.
R I Brinkworth 《Life sciences》1989,45(20):iii-iix
An hypothesis is presented which states that the increased binding for CD4 by the envelope glycoprotein (gp120) from HIV-1 compared with that from HIV-2 is due to the env gene from HIV-1 having at some stage incorporated exon 2 of the gene coding for the beta subunit of a class II MHC protein, possibly HLA-DQ, which contains part of the CD4 binding site. Evidence is presented from amino acid sequence analysis and consideration of putative binding residues from gp120 and HLA-DQ.  相似文献   

17.
The interaction between human immunodeficiency virus type 1 (HIV-1) gp120 and the CD4 receptor is highly specific and involves relatively small contact surfaces on both proteins according to crystal structure analysis. This molecularly conserved interaction presents an excellent opportunity for antiviral targeting. Here we report a group of pentavalent antimony-containing small molecule compounds, NSC 13778 (molecular weight, 319) and its analogs, which exert a potent anti-HIV activity. These compounds block the entry of X4-, R5-, and X4/R5-tropic HIV-1 strains into CD4(+) cells but show little or no activity in CD4-negative cells or against vesicular stomatitis virus-G pseudotyped virions. The compounds compete with gp120 for binding to CD4: either immobilized on a solid phase (soluble CD4) or on the T-cell surface (native CD4 receptor) as determined by a competitive gp120 capture enzyme-linked immunosorbent assay or flow cytometry. NSC 13778 binds to an N-terminal two-domain CD4 protein, D1/D2 CD4, immobilized on a surface plasmon resonance sensor chip, and dose dependently reduces the emission intensity of intrinsic tryptophan fluorescence of D1/D2 CD4, which contains two of the three tryptophan residues in the gp120-binding domain. Furthermore, T cells incubated with the compounds alone show decreased reactivity to anti-CD4 monoclonal antibodies known to recognize the gp120-binding site. In contrast to gp120-binders that inhibit gp120-CD4 interaction by binding to gp120, these compounds appear to disrupt gp120-CD4 contact by targeting the specific gp120-binding domain of CD4. NSC 13778 may represent a prototype of a new class of HIV-1 entry inhibitors that can break into the gp120-CD4 interface and mask the gp120-binding site on the CD4 molecules, effectively repelling incoming virions.  相似文献   

18.
Human immunodeficiency virus (HIV-1) was adapted to replicate efficiently in cells expressing an altered form of the CD4 viral receptor. The mutant CD4 (46 K/D) contained a single amino acid change (lysine 46 to aspartic acid) in the CDR2 loop of domain 1, which results in a 15-fold reduction in affinity for the viral gp120 glycoprotein. The ability of the adapted virus to replicate in CD4 46 K/D-expressing cells was independently enhanced by single amino acid changes in the V2 variable loop, the V3 variable loop, and the fourth conserved (C4) region of the gp120 glycoprotein. Combinations of these amino acids in the same envelope glycoprotein resulted in additive enhancement of virus replication in cells expressing the CD4 46 K/D molecule. In cells expressing the wild-type CD4 glycoproteins, the same V2 and V3 residue changes also increased the efficiency of replication of a virus exhibiting decreased receptor-binding ability due to an amino acid change (aspartic acid 368 to glutamic acid) in the gp120 glycoprotein. In neither instance did the adaptive changes restore the binding ability of the monomeric gp120 glycoprotein or the oligomeric envelope glycoprotein complex for the mutant or wild-type CD4 glycoproteins, respectively. Thus, particular conformations of the gp120 V2 and V3 variable loops and of the C4 region allow postreceptor binding events in the membrane fusion process to occur in the context of less than optimal receptor binding. These results suggest that the fusion-related functions of the V2, V3, and C4 regions of gp120 are modulated by CD4 binding.  相似文献   

19.
Huang JH  Liu ZQ  Liu S  Jiang S  Chen YH 《FEBS letters》2006,580(20):4807-4814
The HIV-1 gp41 core, a six-helix bundle formed between the N- and C-terminal heptad repeats, plays a critical role in fusion between the viral and target cell membranes. Using N36(L8)C34 as a model of the gp41 core to screen phage display peptide libraries, we identified a common motif, HXXNPF (X is any of the 20 natural amino acid residues). A selected positive phage clone L7.8 specifically bound to N36(L8)C34 and this binding could be blocked by a gp41 core-specific monoclonal antibody (NC-1). JCH-4, a peptide containing HXXNPF motif, effectively inhibited HIV-1 envelope glycoprotein-mediated syncytium-formation. The epitope of JCH-4 was proven to be linear and might locate in the NHR regions of the gp41 core. These data suggest that HXXNPF motif may be a gp41 core-binding sequence and HXXNPF motif-containing molecules can be used as probes for studying the role of the HIV-1 gp41 core in membrane fusion process.  相似文献   

20.
Two monoclonal antibodies designated BAT085 and G3-136 were raised by immunizing BALB/c mice with gp120 purified from human immunodeficiency virus type 1 (HIV-1) IIIB-infected H9 cell extracts. Among three HIV-1 laboratory isolates (IIIB, MN, and RF), BAT085 neutralized only IIIB infection of CEM-SS cells, whereas G3-136 neutralized both IIIB and RF. These antibodies also neutralized a few primary HIV-1 isolates in the infection of activated human peripheral blood mononuclear cells. In indirect immunofluorescence assays, BAT085 bound to H9 cells infected with IIIB or MN, while G3-136 bound to H9 cells infected with IIIB or RF, but not MN. Using sequence-overlapping synthetic peptides of HIV-1 IIIB gp120, the binding site of BAT085 and G3-136 was mapped to a peptidic segment in the V2 region (amino acid residues 169 to 183). The binding of these antibodies to immobilized gp120 was not inhibited by the antibodies directed to the principal neutralization determinant in the V3 region or to the CD4-binding domain of gp120. In a competition enzyme-linked immunosorbent assay, soluble CD4 inhibited G3-136 but not BAT085 from binding to gp120. Deglycosylation of gp120 by endo-beta-N-acetylglucosaminidase H or reduction of gp120 by dithiothreitol diminished its reactivity with G3-136 but not with BAT085. These results indicate that the V2 region of gp120 contains multiple neutralization determinants recognized by antibodies in both a conformation-dependent and -independent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号