首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   565273篇
  免费   63543篇
  国内免费   589篇
  2016年   6050篇
  2015年   8616篇
  2014年   10183篇
  2013年   14044篇
  2012年   15915篇
  2011年   16082篇
  2010年   10819篇
  2009年   10209篇
  2008年   14275篇
  2007年   14578篇
  2006年   14014篇
  2005年   13713篇
  2004年   13343篇
  2003年   13261篇
  2002年   12756篇
  2001年   26344篇
  2000年   26601篇
  1999年   21024篇
  1998年   6921篇
  1997年   7221篇
  1996年   6917篇
  1995年   6611篇
  1994年   6543篇
  1993年   6578篇
  1992年   17423篇
  1991年   17127篇
  1990年   16411篇
  1989年   16209篇
  1988年   15260篇
  1987年   14544篇
  1986年   13335篇
  1985年   13410篇
  1984年   10907篇
  1983年   9653篇
  1982年   7310篇
  1981年   6682篇
  1980年   6230篇
  1979年   10632篇
  1978年   8296篇
  1977年   7771篇
  1976年   7166篇
  1975年   7983篇
  1974年   8566篇
  1973年   8419篇
  1972年   7617篇
  1971年   7011篇
  1970年   6186篇
  1969年   6116篇
  1968年   5443篇
  1967年   4699篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Unlike other antiapoptotic Bcl-2 family members, Mcl-1 also mediates resistance to cancer therapy by uniquely inhibiting chemotherapy-induced senescence (CIS). In general, Bcl-2 family members regulate apoptosis at the level of the mitochondria through a common prosurvival binding groove. Through mutagenesis, we determined that Mcl-1 can inhibit CIS even in the absence of its apoptotically important mitochondrion-localizing domains. This finding prompted us to generate a series of Mcl-1 deletion mutants from both the N and C termini of the protein, including one that contained a deletion of all of the Bcl-2 homology domains, none of which impacted anti-CIS capabilities. Through subsequent structure-function analyses of Mcl-1, we identified a previously uncharacterized loop domain responsible for the anti-CIS activity of Mcl-1. The importance of the loop domain was confirmed in multiple tumor types, two in vivo models of senescence, and by demonstrating that a peptide mimetic of the loop domain can effectively inhibit the anti-CIS function of Mcl-1. The results from our studies appear to be highly translatable because we discerned an inverse relationship between the expression of Mcl-1 and of various senescence markers in cancerous human tissues. In summary, our findings regarding the unique structural properties of Mcl-1 provide new approaches for targeted cancer therapy.  相似文献   
2.
Past studies have suggested that a key feature of the mechanism of heparin allosteric activation of the anticoagulant serpin, antithrombin, is the release of the reactive center loop P14 residue from a native state stabilizing interaction with the hydrophobic core. However, more recent studies have indicated that this structural change plays a secondary role in the activation mechanism. To clarify this role, we expressed and characterized 15 antithrombin P14 variants. The variants exhibited basal reactivities with factors Xa and IXa, heparin affinities and thermal stabilities that were dramatically altered from wild type, consistent with the P14 mutations perturbing native state stability and shifting an allosteric equilibrium between native and activated states. Rapid kinetic studies confirmed that limiting rate constants for heparin allosteric activation of the mutants were altered in conjunction with the observed shifts of the allosteric equilibrium. However, correlations of the P14 mutations'' effects on parameters reflecting the allosteric activation state of the serpin were inconsistent with a two-state model of allosteric activation and suggested multiple activated states. Together, these findings support a minimal three-state model of allosteric activation in which the P14 mutations perturb equilibria involving distinct native, intermediate, and fully activated states wherein the P14 residue retains an interaction with the hydrophobic core in the intermediate state but is released from the core in the fully activated state, and the bulk of allosteric activation has occurred in the intermediate.  相似文献   
3.

Aims

This study investigated Cu uptake and accumulation as well as physiological and biochemical changes in grapevines grown in soils containing excess Cu.

Methods

The grapevines were collected during two productive cycles from three vineyards with increasing concentrations of Cu in the soil and at various growth stages, before and after the application of Cu-based fungicides. The Cu concentrations in the grapevine organs and the macronutrients and biochemical parameters in the leaf blades were analyzed.

Results

At close to the flowering stage of the grapevines, the concentration and content of Cu in the leaves were increased. However, the Cu concentrations in the roots, stem, shoots and bunches did not correlate with the metal concentrations in the soil. The application of Cu-based fungicides to the leaves increased the Cu concentrations in the shoots, leaves and rachis; however, the effect of the fungicides on the Cu concentration in the berries was not significant. The biochemical analyses of the leaf blades demonstrated symptoms of oxidative stress that correlated with the Cu concentrations in soil.

Conclusions

The increased availability of Cu in soil had a slight effect on the levels and accumulation of Cu in mature grapevines during the productive season and did not alter the nutritional status of the plant. However, increased Cu concentrations were observed in the leaves. The evidence of oxidative stress in the leaves correlated with the increased levels of Cu in soil.  相似文献   
4.
5.
Opium poppy (Papaver somniferum) is one of the world’s oldest medicinal plants and remains the only commercial source for the narcotic analgesics morphine, codeine and semi-synthetic derivatives such as oxycodone and naltrexone. The plant also produces several other benzylisoquinoline alkaloids with potent pharmacological properties including the vasodilator papaverine, the cough suppressant and potential anticancer drug noscapine and the antimicrobial agent sanguinarine. Opium poppy has served as a model system to investigate the biosynthesis of benzylisoquinoline alkaloids in plants. The application of biochemical and functional genomics has resulted in a recent surge in the discovery of biosynthetic genes involved in the formation of major benzylisoquinoline alkaloids in opium poppy. The availability of extensive biochemical genetic tools and information pertaining to benzylisoquinoline alkaloid metabolism is facilitating the study of a wide range of phenomena including the structural biology of novel catalysts, the genomic organization of biosynthetic genes, the cellular and sub-cellular localization of biosynthetic enzymes and a variety of biotechnological applications. In this review, we highlight recent developments and summarize the frontiers of knowledge regarding the biochemistry, cellular biology and biotechnology of benzylisoquinoline alkaloid biosynthesis in opium poppy.  相似文献   
6.
The aim of the study was the analysis of Cr distribution in shoots of the macrophyte Callitriche cophocarpa by means of two X-ray-based techniques: micro X-ray fluorescence (μXRF) and electron probe X-ray microanalysis (EPXMA). Plants were treated with 100 μM (5.2 mg l?1) chromium solutions for 7 days. Cr was introduced independently at two speciations as Cr(III) and Cr(VI), known for their diverse physicochemical properties and different influence on living organisms. A comparative analysis of Cr(III)-treated plants by EPXMA and μXRF demonstrated high deposition of Cr in epidermal glands/hairs localized on leaves and stems of the plant shoots. Cr in Cr(III)-treated plants was recorded solely in glands/hairs, and the element was not present in any other structures. On the other hand, Cr in Cr(VI)-treated group of plants was rather found in vascular bundles. Moreover, the concentration of Cr in Cr(VI)-treated plants was significantly lower than in plants incubated in Cr(III) solution. The results obtained in this work suggest differences in chromium uptake, transport and accumulation dependent on the oxidative state of the element.  相似文献   
7.
8.
Human mast cells (MCs) contain TG-rich cytoplasmic lipid droplets (LDs) with high arachidonic acid (AA) content. Here, we investigated the functional role of adipose TG lipase (ATGL) in TG hydrolysis and the ensuing release of AA as substrate for eicosanoid generation by activated human primary MCs in culture. Silencing of ATGL in MCs by siRNAs induced the accumulation of neutral lipids in LDs. IgE-dependent activation of MCs triggered the secretion of the two major eicosanoids, prostaglandin D2 (PGD2) and leukotriene C4 (LTC4). The immediate release of PGD2 from the activated MCs was solely dependent on cyclooxygenase (COX) 1, while during the delayed phase of lipid mediator production, the inducible COX-2 also contributed to its release. Importantly, when ATGL-silenced MCs were activated, the secretion of both PGD2 and LTC4 was significantly reduced. Interestingly, the inhibitory effect on the release of LTC4 was even more pronounced in ATGL-silenced MCs than in cytosolic phospholipase A2-silenced MCs. These data show that ATGL hydrolyzes AA-containing TGs present in human MC LDs and define ATGL as a novel regulator of the substrate availability of AA for eicosanoid generation upon MC activation.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号