首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
牛白细胞粘附缺陷病(BLAD)的调查   总被引:4,自引:1,他引:3  
马金柱  崔玉东  朱战波  曹宏伟  朴范泽 《遗传》2006,28(10):1233-1236
牛白细胞粘附缺陷病(BLAD)是一种常染色体单基因隐性遗传疾病, 病因为白细胞表面整合素CD18亚单位基因突变所致。为了解我国奶牛群中BLAD的携带和发生情况, 本研究采用RT-PCR扩增CD18基因片段后, 用TaqⅠ内切酶对扩增产物进行酶切的方法检测了1 000头1~6岁的奶牛, 结果有19头奶牛为BLAD携带牛, 即BLAD携带率为1.9%; 1头为BLAD病牛。  相似文献   

2.
中国荷斯坦牛白细胞黏附缺陷症PCR-RFLP检测方法的研究   总被引:1,自引:0,他引:1  
本试验根据已知牛染色体上CD18编码基因序列设计引物,提取牛血液和精液DNA,可扩增出338bp的DNA片段,将PCR产物克隆到pMD18-T载体中,对阳性重组质粒进行测序,确定为牛的CD18基因。由于CD18基因的383位碱基由A变为G,而引起牛白细胞黏附缺陷症(BLAD),通过对济南市11个奶牛场356头奶牛及53头荷斯坦种公牛进行了BLAD的PCR-RFLP检测,共检出3头杂合母牛(携带者),占检测母牛群的0.84%,在荷斯坦公牛中只检测到一种基因型,没有发现隐性突变基因的携带者。  相似文献   

3.
牛脊柱畸形综合征检测方法的建立与应用   总被引:2,自引:1,他引:1  
牛脊柱畸形综合征(Complex vertebral malformation, CVM)是近年来新发现的致死性牛常染色体隐性遗传缺陷病。由于编码UDP-N-乙酰葡糖胺载体的SLC35A3基因发生G→T的突变而引起本病的发生, 可引起胎牛死胎、流产、早产。为了解我国正常的荷斯坦牛(黑白花奶牛)的CVM携带和发生情况, 建立、应用创造酶切位点PCR(Created restriction site PCR, CRS-PCR)、等位基因特异性PCR(Allele-specific polymerase chain reaction, AS-PCR)检测方法检测了表型正常的436头荷斯坦母牛和93头荷斯坦公牛, 检测到3头CVM携带者, 其中杂合母牛1头, 杂合公牛2头, 携带率分别为0.60%、2.20%。此方法简便、可靠, 为奶牛CVM有害基因的分型和筛选提供了新的方法和思路, 为我国奶牛的分子选育提供了可靠的理论依据。  相似文献   

4.
牛乳头瘤病毒是一种能够引起牛发生皮肤乳头状瘤、纤维素瘤、膀胱和食道癌的DNA病毒,现已在牛群中广泛传播,对牛养殖业造成了重大经济损失.为了诊断甘肃某荷斯坦奶牛场300多头泌乳期奶牛乳头突发疣状物的病因,本研究采用流行病学调查、临床观察、组织病理学、分子生物学检测方法和基因测序技术,对患有疣状物的奶牛进行综合诊断.结果 表明,乳头患疣状物奶牛的其它部位无类似生长物,无发烧、疼痛等异常临床症状,组织病理学HE检测疣状物呈现角化过度和细胞空泡化现象,这与牛乳头瘤病毒感染的组织病理变化相似,并且用PCR方法获得了牛乳头状瘤病毒L1基因,测序比对结果显示为乳头瘤病毒7型基因,核苷酸同源性达98%以上.因此,本次荷斯坦奶牛乳头突发疣状物为乳头瘤病毒7型感染引起的,这是甘肃地区首次发现该基因型乳头瘤病毒,应引起奶牛场与防疫部门的重视.  相似文献   

5.
牛POMC基因多态性及其与南阳牛生长性状的相关分析   总被引:3,自引:0,他引:3  
张春雷  王艳红  陈宏  雷初朝  房兴堂  王居强  马桂变  牛晖  肖杰 《遗传》2009,31(12):1221-1225
为研究阿片黑皮质素前体(POMC)在动物采食和能量平衡调控中发挥重要作用, 文章采用PCR-SSCP结合DNA测序方法, 对秦川牛、南阳牛、郏县红牛、晋南牛、鲁西牛、安格斯牛和荷斯坦奶牛共计480头个体POMC基因的多态性进行研究, 并分析了多态位点与南阳牛生长性状的相关性。结果表明, 牛POMC基因3个位点中, 在3′侧翼区P3位点新发现3个连锁存在的SNP(811845 C>T、811821 T>C和811797 A>G, 与NW_928357对照)。POMC基因3′侧翼区多态位点与南阳牛6月龄体重和0~6月龄平均日增重显著相关, BB型个体显著大于AA型(P<0.05)。  相似文献   

6.
目的:为探求犏牛FSHβ基因的5’端侧翼区的序列特征,揭示该基因的变异和对家畜产仔率的意义,方法:根据奶牛FSHβ基因的5’端侧翼区的基因序列设计引物,应用PCR方法扩增并克隆了犏牛FSHβ基因的5’端侧翼区的序列,扩增序列长度为2022bp,包括5’端上游调控序列、第一外显子和部分第一内含子,并与奶牛该区段序列进行了比较研究。结果:序列分析结果表明:犏牛FSHβ基因的5’端侧翼区与文献报道的奶牛该基因的同源性为98.37%。结论:这为研究杂交一代犏牛雄性雄性不育,为开展牦牛功能基因组计划和分子育种提供了一定的科学的理论依据。  相似文献   

7.
荷斯坦牛HSP70-1基因遗传多态性与乳腺炎抗性关系   总被引:6,自引:1,他引:5  
以253头中国荷斯坦奶牛为研究对象, 检测HSP70-1基因的多态性, 并分析其多态性与中国荷斯坦牛体细胞评分(Somatic cell score, SCS)的相关性。首先以PCR-SSCP法寻找HSP70-1基因编码区的突变, 并通过测序确定突变的类型, 根据突变类型寻找合适的内切酶, 最终采用PCR-RFLP方法鉴定实验牛基因型; 然后分析基因多态性与中国荷斯坦牛SCS的相关性。结果表明HSP70-1基因的1 623 bp处产生G→A→C突变, 2 409 bp处产生G→A突变, 两位点都是沉默突变, 未引起氨基酸序列的改变; 经χ2 适合性检验, 中国荷斯坦牛在两个位点均未达到Hardy-Weinberg平衡状态; 同时, 群体基因座不同基因型与SCS相关分析的结果表明, 2409位点基因型与SCS相关性不显著(P>0.05), 1623位点基因型与SCS相关性显著(P<0.05), CC型SCS显著低于AG、GG型(P<0.05), CC基因型为乳腺炎抗性基因型。在中国荷斯坦奶牛群体中, HSP70-1基因CC基因型可作为改良奶牛乳腺炎抗性性状的分子遗传标记。  相似文献   

8.
目的:为探求犏牛FSHβ基因的5'端侧翼区的序列特征,揭示该基因的变异和对家畜产仔率的意义,方法:根据奶牛FSHβ基因的5'端侧翼区的基因序列设 计引物,应用PCR方法扩增并克隆了犏牛FSHβ基因的5'端侧翼区的序列,扩增序列 长度为2022bp,包括5'端上游调控序列、第一外显子和部分第一内含子,并与奶牛 该区段序列进行了比较研究.结果:序列分析结果表明:犏牛FSHβ基因的5'端侧翼 区与文献报道的奶牛该基因的同源性为98.37%.结论:这为研究杂交一代犏牛雄性 雄性不育,为开展牦牛功能基因组计划和分子育种提供了一定的科学的理论依据.  相似文献   

9.
目的:旨在对不同牛种STAM1基因进行SNPs筛查,为地方牛种选种选育提供一定理论依据.方法:选取生长发育性状明显差异的务川黑牛和贵州荷斯坦奶牛2个牛种构建DNA池,设计1对引物分别扩增2个牛种STAM1基因第14外显子序列总长898bp.切胶回收后对PCR产物进行双向测序.结果:在牛STAM1基因中快速筛查到5个SNPs:A33C、C66G、C356T、T523A、T652C,其中A33C(Tyr→Ser)、C66G(Pro→Arg)、C356T(Glu→Lys)为错义突变,T523A为同义突变,T652C位于内含子区.贵州荷斯坦奶牛在T523A和T652C两个位点基因频率为1.0000,而务川黑牛分别为0.6730和0.8106.生物信息学分析表明:突变前后STAM1的RNA二级结构和蛋白质二级、三级结构均有明显改变.结论:DNA池结合测序技术可快速筛选SNP位点,检测到STAM1基因第14外显子5个SNPs.  相似文献   

10.
利用PCR技术从北京黑白花奶牛(Bostaurus)的基因组DNA中克隆了SRY(Sex-determiningregionontheYchromosome)基因编码区全长序列。序列分析表明牛SRY基因的HMG区(Highmobilitygroup)呈现高度的保守性,与人、小鼠、猪等的相似性达到70%。将SRY基因与pET-28a( )载体相连,构建表达载体pET-28a/SRY;把该表达载体转入大肠杆菌BL21(DE3),以IPTG诱导30℃诱导4h,SRY蛋白可高效表达,表达产物占总蛋白量的26%。对表达产物进行了Western-blotting检测,并采用亲和层析技术获得了高纯度的牛SRY蛋白。通过PCR技术分别获得牛、人、鼠的苗勒氏管抑制物(MullerianInhibitingsubstances,MIS)启动子,凝胶阻滞试验证明,牛SRY蛋白可与人及牛的MIS启动子结合,但与鼠的Mis启动子不发生相互作用。  相似文献   

11.
BLAD is a hereditary disease in Holstein dairy cattle. The defective allele of CD18 gene which is responsible for this disease has a recessive inheritance. The recessive homozygous form (BL/BL) is lethal and since carrier animals have viability, BLAD frequency increases by use of carrier bulls in Artificial Insemination (AI). BLAD carriers can be detected easily by means of polymerase chain reaction followed by restriction analysis of the amplicons. In this study DNA samples from Holstein (n = 30) and Brown Swiss (n = 10) bulls from Abbas Abad AI center (Khorasan state of Iran) were analysed. A 101 bp fragment from the polymorphic region of CD18 gene located on chromosome 1 was amplified by PCR. Restriction enzymes TaqI and HaeIII were used to identify genotypes. Digestion products were screened by electrophoresis on 8% non-denaturing polyacrylamide gel and visualized by ethidium bromide staining. Frequencies of BL/TL (carrier) genotypes in Holstein and Brown Swiss bulls were 3.33% and 0%, respectively. Our pedigree studies of the carrier bull in this experiment revealed that the mutation inherited to him from Hawkeye bull (CANM 369995, BL). Although the elimination of BLAD-carrier bulls from the Holstein world would be the most efficient method to control this genetic disorder, many BLAD-carrier bulls are still listed commercially for AI and BLAD is still occurring in Iran. Monitoring the prevalence of BLAD-carriers in random selected herds may be helpful in judging the effectiveness of the BLAD-control program.  相似文献   

12.
BLAD is a hereditary disease in Holstein dairy cattle. The defective allele of CD18 gene, which is responsible for this disease, has recessive inheritance. The recessive homozygous form (BL/BL) is lethal and since carrier animals have viability, BLAD frequency increases by use of carrier bulls in Artificial Insemination (AI). BLAD carriers can be detected easily by means of polymerase chain reaction followed by restriction analysis of the amplicons. In this study DNA samples from Holstein (n = 30) and Brown Swiss (n = 10) bulls from Abbas Abad AI center (Khorasan state of Iran) were analysed. A 101-bp fragment from the polymorphic region of CD18 gene located on chromosome 1 was amplified by PCR. Restriction enzymes TaqI and HaeIII were used to identify genotypes. Digestion products were screened by electrophoresis on 8% non-denaturing polyacrylamide gel and visualized by ethidium bromide staining. Frequencies of BL/TL (carrier) genotypes in Holstein and Brown Swiss bulls were 3.33% and 0%, respectively. Our pedigree studies of the carrier bull in this experiment revealed that the mutation was inherited by him from Hawkeye bull (CANM 369995, BL). Although the elimination of BLAD-carrier bulls from the Holstein world would be the most efficient method to control this genetic disorder, many BLAD-carrier bulls are still listed commercially for AI, and BLAD is still occurring in Iran. Monitoring the prevalence of BLAD carriers in random selected herds may be helpful in judging the effectiveness of the BLAD-control program.  相似文献   

13.

Background  

Bovine leukocyte adhesion deficiency (BLAD), deficiency of uridine monophosphate synthase (DUMPS), complex vertebral malformation (CVM), bovine citrullinaemia (BC) and factor XI deficiency (FXID) are autosomal recessive hereditary disorders, which have had significant economic impact on dairy cattle breeding worldwide. In this study, 350 Holstein cows reared in Turkey were screened for BLAD, DUMPS, CVM, BC and FXID genotypes to obtain an indication on the importance of these defects in Turkish Holsteins.  相似文献   

14.
The expression of Fc receptors for immunoglobulin G(IgG) and concanavalin A (con A)-binding receptors, luminol-dependent chemiluminescent (LDCL) responses, and the effect of anti-bovine IgG on LDCL responses were evaluated in neutrophils from Holstein calves with leukocyte adhesion deficiency (BLAD). Neutrophils from affected calves showed a 2.1- to 2.5-fold increase in Fc receptor expression compared with those of control calves by flow cytometric analysis. Con A-binding activities of neutrophils from affected calves were similar to those of control calves. Neutrophils from a calf with BLAD, when stimulated with zymosan opsonized with bovine serum (OPZ), heat-aggregated bovine IgG (Agg-bovine IgG), sheep red blood cells (SRBC) sensitized with anti-SRBC antibody (SRBC-anti-SRBC Ab), or con A had LDCL responses of 36 (P<0.05), 77, 126 and 119% of peak LDCL values of controls, respectively. The NBT-reducing value of neutrophils from a calf with BLAD when stimulated with Agg-bovine IgG after pretreatment with anti-bovine IgG was 116.5% of the values of neutrophils from control calves, but the difference was not significant. The LDCL responses of neutrophils from a control calf and a calf with BLAD stimulated with OPZ were inhibited markedly by pre-incubation with anti-bovine IgG antiserum at concentrations ranging from 1.25 to 20 or 40 μg/ml. Although an increase in Fc receptor expression on neutrophils from calves with BLAD was observed, the LDCL responses stimulated with SRBC-anti-SRBC Ab and NBT-reducing activity stimulated with Agg-bovine IgG after pretreatment with anti-bovine IgG did not correlate significantly with the increased Fc receptor expression. These results support that neutrophil functions mediated by the Fc receptors are associated synergistically with the presence of the complement receptor type 3 (CR3)(CD11b/CD18).  相似文献   

15.
Canine leukocyte adhesion deficiency (CLAD) is a fatal immunodeficiency disease found in Irish setters. The clinical manifestations of CLAD are very similar to LAD in humans and BLAD in cattle, which are both caused by mutations in ITGB2 encoding the leukocyte integrin beta-2 subunit (CD18). Sequence analysis of the ITGB2 coding sequence from a CLAD dog and a healthy control revealed a single missense mutation, Cys36Ser. This cysteine residue is conserved among all beta integrins, and the mutation most likely disrupts a disulfide bond. The mutation showed a complete association with CLAD in Irish setters and was not found in a sample of dogs from other breeds. The causative nature of this mutation was confirmed by transduction experiments using retroviral vectors and human LAD EBV B-cells. The normal canine CD18 formed heterodimers with the human CD11 subunit, whereas gene transfer of the mutant CD18 resulted in very low levels of CD11/CD18 expression. The identification of the causative mutation for CLAD now makes it possible to identify carrier animals with a simple diagnostic DNA test, and it forms the basis for using CLAD as a large animal model for the development and evaluation of clinical treatments for human LAD.  相似文献   

16.
BLAD is an autosomal recessive genetic disease that affects Holstein-Friesian (HF) cattle worldwide. It is a disease characterized by a reduced expression of the adhesion molecules on neutrophils. The disease is caused by a mutation that replaces adenine at 383 with guanine, which causes an amino acid change from aspartic acid to glycine. Blood samples and a few semen samples were collected from 1250 phenotypically normal individuals, including HF (N=377), HF crossbred (N=334), Jersey (105), other breeds of cattle (N=160) and water buffalo Bubalus bubalis (N=274) belonging to various artificial insemination stations, bull mother farms (BMFs) and embryo transfer (ET) centres across the country. PCR-RFLP was performed to detect a point mutation in CD18, surface molecules of neutrophils. The results indicate that out of 1250 cattle and buffaloes tested for BLAD, 13 HF purebreds out of 377 and 10 HF crossbreds out of 334 appear to be BLAD carriers. In the HF and HF crossbred population, the percentage of BLAD carriers was estimated as 3.23%. The condition is alarming as the mutant gene has already entered the HF crossbred cattle population and therefore, the population of HF and its crossbreds needs regular screening to avoid the risk of spreading BLAD in the breeding cattle population of India.  相似文献   

17.
The molecular basis of BLAD is the D128G mutation of the gene coding for the CD18 subunit of beta-2 integrin. This mutation is lethal, since homozygous (BL/BL) animals die before they reach sexual maturity. In the 1990s, BLAD was the most widespread genetic disease in HF cattle worldwide. The aim of the present study was to determine the frequency of BLAD carriers among 4645 young breeding bulls in Poland in 1995-2006. The frequency of carriers of the mutated allele showed a clear decreasing trend. The highest frequency (7.9%) was recorded while implementing the BLAD control program (1995-1997). Regular monitoring has enabled a great reduction of this threat to the tested population. Today only sporadic cases of BL/TL heterozygotes are reported (ca. 0.8% in 2004-2006).  相似文献   

18.
A screening program for bovine leukocyte adhesion deficiency (BLAD) in Danish Holstein-Friesian cattle has been initiated. During the first months 1611 animals were tested by a PCR based assay. Of these animals 1256, 346, and 8 were assigned normal, BLAD carriers, and BLAD affected animals, respectively One bull, born as a co-twin, showed weak reaction for the BLAD allele on DNA isolated from leukocytes, but a normal genotype on DNA isolated from semen. Chromosome analysis showed that this bull was a blood chimaera. Estimation of the BLAD allele frequency upon the PCR test results showed that around 450 Danish calves born in 1991 might have been affected with the recessive disorder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号