首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
已有研究表明氮沉降可显著影响土壤线虫群落组成和多样性。然而,目前大多数研究集中在无机氮沉降的影响,而对于不同氮素形态对土壤线虫群落影响的研究还不是很清楚。利用运行5年的模拟氮沉降试验平台,开展了4个氮添加处理即对照(无氮添加,CK)、无机氮(硝酸铵,IN),有机氮(尿素和甘氨酸1∶1混合,ON)和混合氮(无机氮和有机氮7∶3混合,MN)添加对温带森林土壤线虫群落组成和多样性的影响研究,采用浅盘法分离线虫,土壤性质如p H、含水量、全碳全氮分别采用电位法、烘干法和元素分析仪法进行测定,应用营养类群组成、区系分析和代谢足迹分析不同形态氮沉降下土壤线虫群落结构特征。共分离线虫50个属,其中在CK样地中共发现29个属,在IN,ON和MN处理中分别发现线虫属37个,34个和29个,盘旋属Rotylenchus和大节片属Macroposthonia在所有处理中均为优势属。结果表明,与CK相比,IN处理、ON处理和MN处理均显著增加了土壤硝态氮含量。与无机氮相比,混合氮处理显著降低了食真菌线虫数量,有机氮处理显著增加了捕食杂食性线虫数量。与对照相比,无机氮处理显著增加了线虫多样性指数(H'),IN处理的均匀度指数(J)显著高于CK和MN处理,混合氮处理对应的优势度指数(λ)显著高于其他3个处理。在CK和ON处理,线虫的结构指数(SI)较高,富集指数(EI)较低,表明这两个处理的土壤受干扰程度较小,食物网处于结构化状态。在IN和MN处理,土壤线虫富集指数和结构指数均较高(50),表明食物网稳定成熟。食真菌线虫代谢足迹和生物量碳在无机氮处理最高。有机氮和混合氮处理显著增加了捕食杂食性线虫代谢足迹和生物量碳。以上结果表明,不同氮素形态不仅对土壤线虫群落组成产生了影响,而且其代谢足迹也发生了显著的变化,这一结果有助于揭示温带森林对氮沉降的响应机制。  相似文献   

2.
以内蒙古贝加尔针茅草原为研究对象,通过氮素添加(0、15、30、50、100、150、200、300 kg N hm~(-2)a~(-1))模拟氮沉降的控制实验,研究氮沉降对内蒙古贝加尔针茅草原土壤线虫的群落结构和多样性的影响。结果表明,在本实验所有样品中共鉴定出52个属,优势类群为螺旋属(Helicotylenchus)、丽突属(Acrobeles)和真滑刃属(Aphelenchus)。土壤线虫具有明显的表聚现象,相对密度变化不显著。从功能类群上看,随着氮素添加水平的增加,食细菌类群(Bacterivores)线虫和捕食类群/杂食类群(Predators/Omnivores)线虫氮素添加水平均成负相关。从生态指标来看,在N50施氮范围内对土壤线虫的丰富度(SR)、多样性(H')、均匀度(J')等生态指标有促进作用;通路指数在试验的所有处理中都小于0.75,表明土壤中的有机质分解途径是以真菌为主;瓦斯乐思卡指数表明,少量施氮可以改善土壤的环境状况,减少植物寄生类群(Plant parasites)线虫对植物群落及生产力的影响。当施氮量N100时,土壤pH值显著降低,硝态氮和铵态氮显著增加,土壤中生活史k对策者的线虫显著减少,r对策者显著增加,世代交替加快,土壤线虫群落结构显著变化。  相似文献   

3.
不同稻作年限下土壤微生物学性质和线虫群落特征的变化   总被引:1,自引:0,他引:1  
红壤地区旱地改水田后随稻作年限的增加土壤性质会发生改变,但缺乏对百年尺度内土壤动物群落特征变化的了解.本研究选取了旱改水后1 yr、10 yr、20 yr、50 yr和100 yr五个时序的田块,研究了稻作土壤微生物学性质及线虫群落特征的变化.结果表明,随着稻作年限的延长,土壤微生物生物量碳氮、基础呼吸、矿质氮、速效磷、线虫数量及线虫属数均随稻作时间增长而逐渐上升,在50 yr均达到显著水平(P<0.05),在50-100 yr变化渐缓或有所下降.线虫群落中植食者的比例显著上升(P<0.05),捕食/杂食者的比例有所下降但差异不显著.线虫通道指数也随稻作年限的增加而逐渐增长(P<0.05),表明土壤食物网结构趋向于细菌通道.稻作年限对线虫群落成熟度指数和结构指数的影响并不一致.总之,土壤微生物学性质和线虫群落在旱改水50 yr时土壤各项性质均达到较高水平,随稻作年限的继续延长呈现稳定趋势.  相似文献   

4.
江苏省不同农业区土壤线虫群落分布特征   总被引:1,自引:0,他引:1  
调查了江苏省不同农业区农田土壤线虫群落多样性,分析了土壤线虫数量和群落结构与土壤环境因子的关系,并探讨了土壤线虫对土壤健康的生物指示作用.结果表明: 农田土壤线虫共鉴定出2纲7目19科41属.6个农业区的土壤线虫的密度、群落组成均具有一定的差异性.沿海农业区的线虫数量最多(每100 g干土400条),显著高于徐淮、宁镇扬和沿江农业区(P<0.05),而沿江农业区的土壤线虫数量最少(每100 g干土232条),这可能是由于土壤质地、年均降雨量和年均气温等因素的差异造成的.地理位置相近的农业区线虫优势属相似.相关性分析结果显示,土壤线虫数量与土壤有机质、全氮、速效氮、速效钾和速效磷均呈显著正相关关系;RDA分析表明,土壤全氮含量、速效磷及pH对线虫群落种属组成影响较大.分析江苏省农田土壤线虫群落空间分布特征,可为农田土壤生态系统健康状况评价提供数据支撑.  相似文献   

5.
新疆长期棉花连作对土壤理化性状与线虫群落的影响   总被引:1,自引:0,他引:1  
陈虹  杨磊  张凤华 《应用生态学报》2021,32(12):4263-4271
土壤线虫群落特征是评价和指示土壤生态系统健康状况的重要依据。本研究选取不同连作年限(5、10、15、20和25年)的棉田为样地,采用高通量测序技术,探究土壤性状和线虫群落对棉田长期连作的响应。结果表明: 棉田连作10~15年后,土壤pH、电导率显著升高,有机碳、全氮、有效磷、有效钾、硝态氮含量和土壤微生物生物量碳(MBC)显著降低。在连作棉田中共鉴定出土壤线虫3纲7目18科25属,其中螺旋属在不同连作年限的棉田土壤中均为优势属;土壤植物寄生类线虫在不同连作年限中均为优势营养类群,呈现先降低后增加的趋势,连作25年较其他连作年限植物寄生类线虫增加9.1%~208.6%,其中螺旋属线虫增加了392%。随着连作年限的增加,矮化属、茎属、Discopersicus、中环属和中轮属等植物寄生类线虫被检出。连作15年的棉田土壤中,土壤线虫丰富度指数和自由生活线虫成熟度指数显著降低,植物寄生线虫成熟度指数/自由生活线虫成熟度指数显著升高,Shannon多样性指数和瓦斯乐斯卡指数最低;有效磷和MBC是影响土壤线虫群落变化的主要环境因子。这说明棉田连作10~15年会发生土壤养分失衡,土壤线虫多样性降低,土壤食物网稳定性变差,棉花致病类植物寄生线虫增加,产生连作障碍。  相似文献   

6.
侯磊  任毅华  卢杰  薛会英 《生态学报》2023,43(6):2348-2356
为了解雪被覆盖对青藏高原高寒森林土壤线虫群落的影响,选取藏东南色季拉山急尖长苞冷杉林为研究区,采用高通量测序技术分析不同雪被厚度0、10、20、30 cm下土壤线虫群落特征。结果表明:随着雪被增厚,有机质和全氮含量显著降低(P<0.05),全钾含量显著升高(P<0.05)。雪被增厚对线虫群落Shannon指数、Simpson指数、Pielou指数以及成熟度指数、线虫通路比值(NCR)均未产生显著影响,但NCR值有升高的趋势。雪被增厚使刺嘴纲(Enoplea)及食细菌性线虫的相对丰度增多,同时使20 cm和30 cm雪被下土壤线虫群落结构发生显著变化(P<0.05)。土壤有机质、全氮和全钾含量是影响土壤线虫群落的最关键的3个土壤环境因子。研究表明雪被厚度会对青藏高原色季拉山急尖长苞冷杉林土壤线虫群落产生影响,雪被增厚意味着较为稳定和温暖的土壤环境,利于土壤细菌数量增加,继而利于土壤有机质分解及钾的释放,为刺嘴纲及食细菌性线虫的增多提供了资源与环境条件。目前仍需对青藏高原地区土壤进行系统调查,以更深入的了解该生态脆弱区土壤线虫分布及其响应环境变化的规律。  相似文献   

7.
采用2×4双因子完全交互试验设计,研究了常规和控制灌溉条件下氮肥减量施用(常规施氮300 kg N·hm-2、减氮10%、减氮20%和减氮40%)对稻田土壤线虫数量、种类及群落结构的影响。结果表明,8个处理中共观测到16科28属的土壤线虫,分别为食细菌线虫7科12属,食真菌线虫3科4属,植食性线虫3科5属,杂食/捕食性线虫3科7属。其中丝尾垫刃属(Filenchus)为所有处理的优势属,占所有线虫总数的35.4%~47.9%。所有处理中均以食真菌线虫所占比例最高,食细菌线虫次之,然后是植食类线虫,杂食/捕食性线虫数量最少。常规灌溉条件下土壤线虫总数略大于控制灌溉下的线虫总数,但无显著差异;当施氮量减少20%(即降低到240 kg N·hm-2)时,土壤线虫总量有明显的提高,而随着施氮量的进一步降低,线虫总数并没有进一步的变化。  相似文献   

8.
天然高寒草地转变为燕麦人工草地对土壤线虫群落的影响   总被引:3,自引:0,他引:3  
杨锐  吴鹏飞  魏雪 《生态学报》2020,40(14):4903-4920
为查明高寒草地上种植燕麦(Avena sativa)对土壤线虫群落的影响,于2014年7、9月用土钻法和湿漏斗法(Baermann法)对西南民族大学青藏高原畜牧业高科技研发示范基地内燕麦地(Oat grassland,OG)和天然草地(Natural grassland,NG)的土壤线虫群落进行调查。共分离土壤线虫10179条,隶属于2纲8目50科143属,平均密度477条/100g干土。燕麦地与天然草地土壤线虫群落结构具有明显差异,影响群落结构的主要类群为拟丽突属(Acrobeloides)、原杆属(Protorhabditis)、丝尾垫刃属(Filenchus)和盘旋属(Rotylenchus),但不同月份间存在差异。燕麦地的土壤线虫群落密度、食细菌线虫密度、食真菌线虫密度和自由生活线虫成熟度指数(MI)均显著高于天然草地(P0.01;P0.05;P0.001;P0.01),植物寄生线虫成熟度指数(PPI)则显著低于天然草地(P0.05)。两种草地7月份的土壤线虫群落类群数和香农多样性指数(H′)均显著低于9月(P0.05),仅燕麦地7月份的食细菌、食真菌线虫密度和Simpson优势度指数(C)显著高于9月(P0.05;P0.001;P0.01)。典范对应分析(Canonical correspondence analysis,CCA)及回归分析结果表明,土壤pH、有机质、全氮、速效磷和含水量是影响线虫群落的主要环境因子。研究结果表明,高寒草地种植燕麦后在短期内改变了线虫群落结构,增加了线虫群落密度以及食细菌和食真菌线虫在群落中的比例,以植物寄生线虫为主的群落营养结构转变为以食细菌线虫为主,同时也增加了线虫群落不同月份间的差异。  相似文献   

9.
潮棕壤线虫群落对土地利用方式的响应   总被引:4,自引:0,他引:4  
李琪  梁文举  欧伟 《生物多样性》2007,15(2):172-179
作者对潮棕壤不同土地利用方式(旱田、撂荒地和林地)下土壤线虫群落时空分布特征进行了研究, 结果表明, 不同土地利用方式能够影响线虫群落及其优势属的时空分布。线虫优势属对不同土地利用方式的响应不同, 撂荒地和林地处理中板唇属(Chiloplacus)线虫主要分布在5–30 cm土层, 而其他线虫优势属则主要分布在0–20 cm土层; 在旱田处理中, 短体属(Pratylenchus)线虫均匀分布在各个土层。由于土地利用方式的改变而引起的土壤环境因素的变化能够对土壤线虫产生影响, 研究发现土壤孔隙度、土壤有机碳、全氮和碳氮比与土壤线虫优势属的数量具有显著的正相关关系。线虫区系分析结果表明, 撂荒地和林地处理中土壤环境相对稳定, 土壤食物网向较成熟的阶段演替。线虫区系分析方法可用来揭示不同土地利用方式下土壤食物网的变化, 为进一步研究土壤生态过程对土地利用方式的响应提供了有效的工具。  相似文献   

10.
降水格局变化及大气氮沉降对诸多生态过程及功能均有重要影响。然而,目前对于土壤动物对以上两种全球变化趋动因子的响应模式及机制仍缺乏充分认识。本研究利用野外控制试验技术,在中国北方平原弃耕草地生态系统模拟增加降水及大气氮沉降对土壤动物群落的影响。结果表明,增加降水及氮素添加对土壤螨类及跳虫的种群密度均无影响。增加降水使土壤线虫的数量显著增加了14.9%,氮沉降对土壤线虫的数量无影响,但显著增加了群落中食细菌性线虫的数量(45.8%)。本研究表明,土壤线虫对资源有效性及生境微环境变化响应的敏感性强于土壤小节肢动物,且增加降水与氮沉降之间不存在交互作用。  相似文献   

11.
土壤线虫对气候变化的响应研究进展   总被引:2,自引:0,他引:2  
宋敏  刘银占  井水水 《生态学报》2015,35(20):6857-6867
全球变化对陆地生态系统功能具有重要而深远的影响。陆地生态系统地下部分具有重要的生态功能,其组成及结构对气候变化的响应将进一步减缓或加剧全球化进程。土壤线虫在各类生态系统中分布十分广泛,是地下食物网的重要组分,在维持土壤生物多样性及营养物质循环过程中发挥重要作用,其组成及结构对不同气候变化驱动因子的响应机制与模式不尽相同。增温及降水格局变化主要是通过改变线虫生境而直接影响其种群密度与结构,两者通常表现为正效应且作用效果随处理时间的延长而增强。CO2与大气氮沉降主要是通过影响地上植被,凋落物质量,土壤理化性质等间接过程影响土壤线虫。同时,不同的全球变化因子之间存在着复杂的交互作用,深入理解这些因子之间交互作用对线虫群落的影响模式与机制对于探讨未来气候变化情景下生态统生物多样性及养分循环过程具有重要的理论指导意义。  相似文献   

12.
Nitrogen deposition and carbon sequestration in alpine meadows   总被引:6,自引:0,他引:6  
Nitrogen deposition experiments were carried out in alpine meadow ecosystems in Qinghai-Xizang Plateau in China, in order to explore the contribution of nitrogen deposition to carbon sequestration in alpine meadows. Two methods were used in this respect. First, we used the allocation of 15N tracer to soil and plant pools. Second, we used increased root biomass observed in the nitrogen-amended plots. Calculating enhanced carbon storage, we considered the net soil CO2 emissions exposed to nitrogen deposition in alpine meadows. Our results show that nitrogen deposition can enhance the net soil CO2 emissions, and thus offset part of carbon uptake by vegetation and soils. It means that we have to be cautious to draw a conclusion when we estimate the contribution of nitrogen deposition to carbon sequestration based on the partitioning of 15N tracer in terrestrial ecosystems, in particular in N-limited ecosystems. Even if we assess the contribution of nitrogen deposition to carbon sequestration based on increased biomass exposed to nitrogen deposition in terrestrial ecosystems, likewise, we have to consider the effects of nitrogen deposition on the soil CO2 emissions.  相似文献   

13.
The effects of nitrogen (N) deposition on soil organic carbon (C) and greenhouse gas (GHG) emissions in terrestrial ecosystems are the main drivers affecting GHG budgets under global climate change. Although many studies have been conducted on this topic, we still have little understanding of how N deposition affects soil C pools and GHG budgets at the global scale. We synthesized a comprehensive dataset of 275 sites from multiple terrestrial ecosystems around the world and quantified the responses of the global soil C pool and GHG fluxes induced by N enrichment. The results showed that the soil organic C concentration and the soil CO2, CH4 and N2O emissions increased by an average of 3.7%, 0.3%, 24.3% and 91.3% under N enrichment, respectively, and that the soil CH4 uptake decreased by 6.0%. Furthermore, the percentage increase in N2O emissions (91.3%) was two times lower than that (215%) reported by Liu and Greaver (Ecology Letters, 2009, 12:1103–1117). There was also greater stimulation of soil C pools (15.70 kg C ha?1 year?1 per kg N ha?1 year?1) than previously reported under N deposition globally. The global N deposition results showed that croplands were the largest GHG sources (calculated as CO2 equivalents), followed by wetlands. However, forests and grasslands were two important GHG sinks. Globally, N deposition increased the terrestrial soil C sink by 6.34 Pg CO2/year. It also increased net soil GHG emissions by 10.20 Pg CO2‐Geq (CO2 equivalents)/year. Therefore, N deposition not only increased the size of the soil C pool but also increased global GHG emissions, as calculated by the global warming potential approach.  相似文献   

14.
Increased mercury in forest soils under elevated carbon dioxide   总被引:1,自引:0,他引:1  
Fossil fuel combustion is the primary anthropogenic source of both CO2 and Hg to the atmosphere. On a global scale, most Hg that enters ecosystems is derived from atmospheric Hg that deposits onto the land surface. Increasing concentrations of atmospheric CO2 may affect Hg deposition to terrestrial systems and storage in soils through CO2-mediated changes in plant and soil properties. We show, using free-air CO2 enrichment (FACE) experiments, that soil Hg concentrations are almost 30% greater under elevated atmospheric CO2 in two temperate forests. There were no direct CO2 effects, however, on litterfall, throughfall or stemflow Hg inputs. Soil Hg was positively correlated with percent soil organic matter (SOM), suggesting that CO2-mediated changes in SOM have influenced soil Hg concentrations. Through its impacts on SOM, elevated atmospheric CO2 may increase the Hg storage capacity of soils and modulate the movement of Hg through the biosphere. Such effects of rising CO2, ones that transcend the typically studied effects on C and nutrient cycling, are an important next phase for research on global environmental change.  相似文献   

15.
Nutrient‐poor grassland on a silty clay loam overlying calcareous debris was exposed to elevated CO2 for six growing seasons. The CO2 exchange and productivity were persistently increased throughout the experiment, suggesting increases in soil C inputs. At the same time, elevated CO2 lead to increased soil moisture due to reduced evapotransporation. Measurements related to soil microflora did not indicate increased soil C fluxes under elevated CO2. Microbial biomass, soil basal respiration, and the metabolic quotient for CO2 (qCO2) were not altered significantly. PLFA analysis indicated no significant shift in the ratio of fungi to bacteria. 0.5 m KCl extractable organic C and N, indicators of changed DOC and DON concentrations, also remained unaltered. Microbial grazer populations (protozoa, bacterivorous and fungivorous nematodes, acari and collembola) and root feeding nematodes were not affected by elevated CO2. However, total nematode numbers averaged slightly lower under elevated CO2 (?16%, ns) and nematode mass was significantly reduced (?43%, P = 0.06). This reduction reflected a reduction in large‐diameter nematodes classified as omnivorous and predacious. Elevated CO2 resulted in a shift towards smaller aggregate sizes at both micro‐ and macro‐aggregate scales; this was caused by higher soil moisture under elevated CO2. Reduced aggregate sizes result in reduced pore neck diameters. Locomotion of large‐diameter nematodes depends on the presence of large enough pores; the reduction in aggregate sizes under elevated CO2 may therefore account for the decrease in large nematodes. These animals are relatively high up the soil food web; this decline could therefore trigger top‐down effects on the soil food web. The CO2 enrichment also affected the nitrogen cycle. The N stocks in living plants and surface litter increased at elevated CO2, but N in soil organic matter and microbes remained unaltered. Nitrogen mineralization increased markedly, but microbial N did not differ between CO2 treatments, indicating that net N immobilization rates were unaltered. In summary, this study did not provide evidence that soils and soil microbial communities are affected by increased soil C inputs under elevated CO2. On the contrary, available data (13C tracer data, minirhizotron observations, root ingrowth cores) suggests that soil C inputs did not increase substantially. However, we provide first evidence that elevated CO2 can reduce soil aggregation at the scale from µ m to mm scale, and that this can affect soil microfaunal populations.  相似文献   

16.
Anthropogenic nitrogen (N) deposition effects on soil organic carbon (C) decomposition remain controversial, while the role of plant species composition in mediating effects of N deposition on soil organic C decomposition and long‐term soil C sequestration is virtually unknown. Here we provide evidence from a 5‐year grassland field experiment in Minnesota that under elevated atmospheric CO2 concentration (560 ppm), plant species determine whether N deposition inhibits the decomposition of soil organic matter via inter‐specific variation in root lignin concentration. Plant species producing lignin‐rich litter increased stabilization of soil C older than 5 years, but only in combination with elevated N inputs (4 g m?2 year?1). Our results suggest that N deposition will increase soil C sequestration in those ecosystems where vegetation composition and/or elevated atmospheric CO2 cause high litter lignin inputs to soils.  相似文献   

17.
The environmental changes arising from nitrogen (N) deposition and precipitation influence soil ecological processes in forest ecosystems. However, the corresponding effects of environmental changes on soil biota are poorly known. Soil nematodes are the important bioindicator of soil environmental change, and their responses play a key role in the feedbacks of terrestrial ecosystems to climate change. Therefore, to explore the responsive mechanisms of soil biota to N deposition and precipitation, soil nematode communities were studied after 3 years of environmental changes by water and/or N addition in a temperate forest of Changbai Mountain, Northeast China. The results showed that water combined with N addition treatment decreased the total nematode abundance in the organic horizon (O), while the opposite trend was found in the mineral horizon (A). Significant reductions in the abundances of fungivores, plant-parasites and omnivores-predators were also found in the water combined with N addition treatment. The significant effect of water interacted with N on the total nematode abundance and trophic groups indicated that the impacts of N on soil nematode communities were mediated by water availability. The synergistic effect of precipitation and N deposition on soil nematode communities was stronger than each effect alone. Structural equation modeling suggested water and N additions had direct effects on soil nematode communities. The feedback of soil nematodes to water and nitrogen addition was highly sensitive and our results indicate that minimal variations in soil properties such as those caused by climate changes can lead to severe changes in soil nematode communities.  相似文献   

18.

Aims

The aim of this study was to investigate the effects of elevated CO2 concentration and nitrogen addition on soil organic carbon fractions in subtropical forests where the ambient N deposition was high.

Methods

Seedlings of typical subtropical forest ecosystems were transplanted in ten open-top chambers and grown under CO2 and nitrogen treatments. The treatments included: 1) elevated CO2 (700?μmol?mol-1); 2) N addition of 100?kg NH4NO3 ha-1?yr-1; 3) combined elevated CO2 and N addition; and 4) control. We measured soil total organic carbon (TOC), particulate organic carbon (POC), readily oxidizable organic carbon (ROC), and microbial biomass carbon (MBC).

Results

Results showed that elevated CO2 alone did not significantly affect soil TOC, POC and ROC after 4?years of treatment, but increased soil MBC and soil respiration compared to the control. N addition alone had no significant effect neither on soil TOC, POC and ROC, but decreased MBC and soil respiration over time. However, the elevated CO2 and N addition together significantly increased soil POC and ROC, and had no significant effect on soil MBC.

Conclusions

This study indicated that even in N-rich subtropical forest ecosystems, inputs of N are still needed in order to sustain soil C accumulation under elevated CO2.  相似文献   

19.
模拟大气氮沉降对中国森林生态系统影响的研究进展   总被引:3,自引:0,他引:3  
人类活动加剧了活性氮的生产和排放,并导致氮沉降日益增加并全球化。目前,人类活动对全球氮循环的干扰已经超出了地球系统安全运行的界限。中国已成为全球氮沉降的高发区域,高氮沉降已经威胁到生态系统的健康和安全,并成为生态文明建设过程中亟待理清和解决的热点问题。对国际上和中国森林生态系统模拟氮沉降研究的概况进行了综述,并从生物学和非生物学两大过程重点阐述模拟氮沉降增加对中国主要森林生态系统影响的研究进展。中国自2000年以后才开始重视大气氮沉降产生的生态环境问题,中国科学院华南植物园在国内森林生态系统模拟氮沉降试验研究上做出了开创性的贡献。模拟氮沉降研究表明,持续高氮输入将会显著改变森林生态系统的结构和功能,并威胁生态系统的健康发展,特别是处于氮沉降热点区域的中国中南部。森林生态系统的氮沉降效应依赖于系统的氮状态、土地利用历史、气候特征、林型和林龄等。最后,对未来的研究提出了一些建议,包括加强长期跟踪研究和不同气候带站点之间的联网研究,特别是在森林生态系统对长期氮沉降响应与适应的过程机制、地下碳氮吸存潜力研究、以及与其他全球变化因子的耦合研究等方面,以期为森林生态系统的可持续发展提供理论基础和管理依据。  相似文献   

20.
降水变化和氮沉降影响森林叶根凋落物分解研究进展   总被引:1,自引:0,他引:1  
谭向平  申卫军 《生态学报》2021,41(2):444-455
全球环境变化通过改变凋落物质量和产量、土壤生物以及非生物因子调控森林凋落物分解,从而对森林生态系统物质和能量循环产生重要的影响。就森林凋落物分解对当前我国面临降水格局变化和大气氮沉降增加的响应进行了回顾和系统的分析,发现降水格局改变如降水减少可能降低凋落物质量从而减缓凋落物分解,而氮沉降增加通常提高凋落物质量从而促进凋落物分解(间接效应);降水格局改变通过调节土壤含水量和溶解氧含量进而影响微生物参与的分解过程,或通过改变可溶性组分的淋溶量来影响凋落物分解的物理过程,而氮沉降增加主要通过提高外源氮素的有效性从而促进或抑制微生物参与的分解过程(直接效应)。现有研究大多是基于地上凋落物(例如叶凋落物)来理解和量化森林凋落物分解速率与环境因子之间的关系。但目前对降水格局变化及其与大气氮沉降增加的交互作用如何影响森林地上和地下凋落物分解,以及潜在的微生物学机制仍然缺乏统一和清晰的认识。从土壤性质、凋落物质量、微生物群落结构和功能3个方面构建了环境变化对森林地上和地下凋落物分解的概念框架,并进一步阐述未来研究的重点方向:(1)亟需查明地上和地下凋落物分解的驱动机制;(2)探明降水格局变化和氮添加单因子及两因子交互作用对凋落物分解和养分释放的影响及其生物化学调控机理;(3)阐明微生物群落结构和功能对降水格局变化和氮添加单因子及两因子交互的响应机制。以期为深入探讨全球环境变化对森林凋落物分解的影响,以及环境胁迫下森林土壤"碳库"维持机制的解释提供科学依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号